Browse > Article
http://dx.doi.org/10.7854/JPSK.2017.26.4.311

Petrology and Geochemistry of Peridotite Xenoliths from Miocene Alkaline Basalt Near the Mt. Baekdu Area  

Kim, Eunju (Department of Geological Sciences, Pusan National University)
Park, Geunyeong (Department of Geological Sciences, Pusan National University)
Kim, Sunwoong (Department of Geological Sciences, Pusan National University)
Kil, Youngwoo (Department of Energy and Resources Engineering, Chonnam National University)
Yang, Kyounghee (Department of Geological Sciences, Pusan National University)
Publication Information
The Journal of the Petrological Society of Korea / v.26, no.4, 2017 , pp. 311-325 More about this Journal
Abstract
Peridotite xenoliths in middle Miocene alkaline basalt from the Mt. Baekdu area are mainly anhydrous spinel lherzolites, displaying coarse-grained protogranular texture. These xenoliths have late-stage secondary orthopyroxene replacing olivine as the metasomatic mineral and glass formed along the grain boundaries. The studied xenoliths are characterized by the high $Mg{\sharp}[=100{\times}Mg/(Mg+Fe_{total})$ atomic ratio] of olivine, orthopyroxene and clinopyroxene (89~92) and the $Cr{\sharp}[=100{\times}Cr/(Cr+Al)$ atomic ratio] of spinel (10~29). Based on major-element data, the studied xenoliths are similar to those from the abyssal peridotites. Clinopyroxenes of the xenoliths are mostly enriched in incompatible trace elements, exhibiting two types of REE patterns: (1) LREE-depleted with $(La/Yb)_N$ of 0.1~0.2 and $(La/Ce)_N$ of 0.4~0.8. (2) LREE enriched with $(La/Yb)_N$ of 2.2~3.8 and $(La/Ce)_N$ of 1.2~1.6. The calculated equilibrium temperatures and oxygen fugacities resulted in $920{\sim}1050^{\circ}C$ and ${\Delta}fO_2(QFM)=-0.8{\sim}0.2$, respectively. It is suggested that the Mt. Baekdu peridotite xenoliths represent residues left after variable degrees of melt extraction(less than 15 vol%), which was subsequently subjected to different degrees of modal/cryptic metasomatism by silica- and LREE-enriched fluids (or melts).
Keywords
Mt. Baekdu Peridotite xenoliths; Miocene alkaline basalt; modal/cryptic metasomatism; silica- and LREE-enriched fluids (or melts);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Arai, S., 1994, Compositional variation of of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites, Journal of Volcanology and Geothermal Research, 59, 279-293.   DOI
2 Arai, S. and Ishimaru, S., 2008, Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. Journal of Petrology, 49, 665-695.
3 Ballhaus, C., Berry, R.F. and Green, D.H., 1991, High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107, 22-40.
4 Choi, S.H., Lee, J.I., Park, C.H. and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. The Island Arc, 11, 221-235.   DOI
5 Coltorti, M., Beccaluva, L., Bonadiman, C., Salvini, L., and Siena F., 2000, Glasses in mantle xenoliths as geochemical indicators of metasomatic agents. Earth and Planetary Science Letters, 183, 303-320.   DOI
6 Dewey, J.F. and Lamb, S.H., 1992, Active tectonics of the Andes. Tectonophysics, 205, 79-95.   DOI
7 Downes, H., Macdonald, R., Upton, B.G.J., Cox, K.G., Bodinier, J.-L., Mason, P.R.D., James, D., Hill, P.G. and Hearn, B.C., Jr, 2004, Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. Journal of Petrology, 45, 1631-1662.   DOI
8 Yun, S., Won, C. and Lee, M., 1993, Cenozoic volcanic activity and petrochemistry of volcanic rocks in the Mt. Paektu area. Journal of Geological Society of Korea, 29, 291-307 (Korean with English abstract).
9 Yun, S., Koh, J., and Anh, J., 1998, A Study on the Spinel-Lherzolite Xenoliths in the Alkali Basalt from Eastern Cheju Island, Korea. Economic and environmental geology, 31, 447-458.
10 Yun, S., and Koh, J., 2014, Petrochemical characteristics of volcanic rocks of historic era at Mt. Baekdusan. Journal of the Geological Society of Korea, 50, 753-769.   DOI
11 Zhao, D., Tian, Y., Lei, J., Liu, L. and Zheng, S., 2009, Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 173, 197-206.   DOI
12 Grégoire, M., Chevet, J. and Maaloe, S., 2010, Composite xenoliths from Spitsbergen: evidence of the circulation of MORB-related melts within the upper mantle. Geological Society, London, Special Publications, 337, 71-86.   DOI
13 Dygert, N., and Liang, Y, 2015, Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites. Earth and Planetary Science Letter, 420, 151-161.   DOI
14 Frey, F.A. and Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38, 129-176.   DOI
15 Grégoire, M., McInnes, B.I.A. and O'Reilly. S.Y., 2001, Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea Part 2. Trace element characteristics of slab-derived fluids. Lithos, 59, 91-108.   DOI
16 Ichiyama, Y., Morishita, T., Tamura, A. and Arai, S., 2016, Peridotite xenoliths from the Shiribeshi Seamount, Japan Sea: insights into mantle processes in a back-arc basin. Contributions to Mineralogy and Petrology, 171:86. DOI 10.1007/s00410-016-1300-6   DOI
17 Ionov, D.A. and Hofmann, A.W., 1995, Nb, Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth and Planetary Science Letters, 131, 341-356.   DOI
18 Jwa, Y., Lee, J. and Zheng, X., 2003, A study on the eruption ages of Baekdusan: 1. Radiocarbon ($^{14}C$) age for charcoal and wood samples. Journal of the Geological Society of Korea, 39, 347-357.
19 Jolivet, L., Tamaki, K. and Fournier, M., 1994, Japan Sea, opening history and mechanism: a synthesis. Journal of Geophysics Resourch, 99, 22237-22259.   DOI
20 Kaneoka, I., Takigami, Y., Takaoka, N., Yamashita, S. and Tamaki, K., 1992, $^{40}Ar-^{39}Ar$ analysis of volcanic rocks recovered from the Japan Sea floor: constraints on the age of formation of the Japan. In: Tamaki K, Suyehiro K, Allan J, McWilliams S (eds) Proceedings of the Ocean Drilling Program Scientific Result, 127/128, College Station, Texas (Ocean Drilling Program), 819-836
21 Kelemen, P.B., Hart, S.R. and Bernstein, S., 1998, Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 164, 387-406.   DOI
22 Keppler, H., 1996, Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380, 237-240.   DOI
23 Kil, Y. and Wendlandt, R.F., 2004, Pressure and temperature evolution of upper mantle under the Rio Grande Rift. Contributions to Mineralogy and Petrology, 148, 265-280.   DOI
24 Köhler, T.P. and Brey, G.P., 1990, Calcium exchange between olivine and clinopyroxene calibrated as a geobarometer for natural peridotites from 2 to 60 kb with mantle transition zoneapplications. Geochimica et Cosmochimica Acta, 54, 2375-2388.   DOI
25 Kuritani, T., Ohtani, E. and Kimura, J.-I., 2011, Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geoscience, 4, 713-716.   DOI
26 Lee, D., 1991, The eruption stratigraphy and volcanism in the Mt. Baekdu area. '91 International science and technology meeting (Abstract), The Korean-Chinese scientific association, 21
27 Liu, T.G., 1983, The study on cenozoic volcanism in the Jangbaksan, the survey of geology in academy house, China, 343-355 (in Chinese).
28 Manning, C.E., 2004, Chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223, 1-16.   DOI
29 McDonough, W.F. and Sun, S.S., 1995, The composition of the Earth. Chemical Geology, 120, 223-253.   DOI
30 McCulloch, M.T. and Gamble, J.A., 1991, Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374.   DOI
31 McInnes, B.I.A., Gregoire, M., Binns, R.A., Herzig, P.M. and Hannington, M.D., 2001, Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth and Planetary Science Letters, 188, 169-183.   DOI
32 Mercier, J.C.C. and Nicolas, A., 1975, Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454-487.   DOI
33 Ntaflos, T., Tschegg, C., Coltorti, M., Akinin, V. V., and Kosler, J., 2008, Asthenospheric signature in fertile spinel lherzolites from the Viliga Volcanic Field in NE Russia. Metasomatism in Oceanic and Continental Lithospheric Mantle (eds. Coltorti, M., & Gregoire, M.), Geological Society, London, Special Publications, 293, 57-81.   DOI
34 Otofuji, Y., Mastuda, T. and Nohda, S., 1985, Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japanç rifting process of the Japan Sea. Earth and Planetary Science Letters, 72, 265-277.
35 Perinelli, C., Sapienza, G.T., Armienti, P. and Morten, L., 2008, Metasomatism of the upper mantle beneath the Hyblean Plateau (Sicily): evidence from pyroxenes and glass in peridotite xenoliths. In: Coltorti, M., Gregoire, M. (Eds.), Metasomatism in oceanic and continental lithospheric mantle: Geological Society of London Special Publication 293, 197-222.   DOI
36 Ramos, V.A., 1999, Plate tectonic setting of the Andean Cordillera. Epiodes, 22, 183-190.
37 Spera, F. J. 1980. Aspects of magma transport. In: HARGRAVES, R. B. (ed.) Physics of Magmatic Processes. Princeton University Press, Princeton, NJ, 265-324.
38 Rampone, E., Bottazzi, P. and Ottolini, L., 1991, Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Nature, 354, 518-520.   DOI
39 Sager, W.W., Handschumacher, D.W., Hilde, T.W.C., Bracey, D.R., 1988. Tectonic evolution of the northern Pacific plate and Pacific-Farallon-Izanagi triple junction in the late Jurassic and early Cretaceous. Tectonophysics, 155, 345-364.   DOI
40 Smith, D., Riter, J.C.A. and Mertzman, S.A., 1999, Erratum to ''water-rock interactions, orthopyroxene growth and Sienrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States''. Earth and Planetary Science Letters, 167, 347-356.   DOI
41 Steinberger, B. and Gaina, C., 2007, Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea. Geology, 35, 407-410.   DOI
42 Sun, S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42, 313-345.   DOI
43 Szabo, C., Falus, G., Zajacz, Z., Kovacs, I. and Bali, E., 2004, Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics, 393, 119-137.   DOI
44 Tamaki, K., Suyehiro, K., Allan, J., Ingle, Jr. J.C., and Pisciotto, K.A., 1992, Tectonic synthesis and implications of Japan Sea ODP drilling. Proceedings of the Ocean Drilling Program Scientific Result, 127/128, Texas, 1333-1348.
45 Woo, Y., Yang, K., Kil, Y., Yun, S. and Arai, S., 2014, Silica-and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments? Lithos, 208-209, 2014, 312-323.   DOI
46 Tang., Y., Obayashi, M., Niu, F., Grand, S. P., Chen, Y. J., Kawakatsu, H., Tanaka, S., Ning, J., Ni, J.F., 2014, Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geoscience, 7, 470-475.   DOI
47 Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K. and Lee, M.W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553.
48 Webb, S.A.C. and Wood, B.J., 1986, Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology, 92, 471-480.   DOI
49 Xu, Y., Menzies, M.A., Pieter, V., Mercier, J.-C. and Lin, C., 1998, Texture-Temperature-Geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. Journal of Petrology, 39, 469-493.   DOI
50 Xu, X., O'Reilly, S.Y., Griffin, W.L. and Zhou, X., 2000, Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. Journal of Petrology, 41, 111-148.   DOI
51 Ye, H., Zhang, B. and Mao, F., 1987, The Cenozoic tectonic evolution of the Great North China: two types of rifting and crustal necking in the Great North China and their tectonic implications. Tectonophysics, 133, 217-227.   DOI
52 Yu, J., Yang, K., and Kim, J., 2010, Textural and Geochemical characteristics and their relation of spinel peridotite xenoliths from Jeju Island. The Journal of the Petrological Society of Korea, 19, 227-244.