DOI QR코드

DOI QR Code

Silica Enrichment in Mantle Xenoliths Trapped in Basalt, Jeju Island: Modal Metasomatic Evidences

제주도 맨틀포획암내의 실리카 부화작용: 모달 교대작용의 증거

  • Yu, Jae-Eun (Dept. of Geological Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Kim, Sun-Woong (Dept. of Geological Sciences, Division of Earth Environmental System, Pusan National University) ;
  • Yang, Kyoung-Hee (Dept. of Geological Sciences, Division of Earth Environmental System, Pusan National University)
  • 유재은 (부산대학교 지구환경시스템학부, 지질환경과학과) ;
  • 김선웅 (부산대학교 지구환경시스템학부, 지질환경과학과) ;
  • 양경희 (부산대학교 지구환경시스템학부, 지질환경과학과)
  • Received : 2011.03.07
  • Accepted : 2011.03.21
  • Published : 2011.03.31

Abstract

Mantle-derived xenoliths, corresponding to spinel harzburgite and lherzolite in alkali basalts from Jeju Island, are metasomatized to various extents. They contain distinctive secondary orthopyroxene, forming corona or poikilitic textures. It clearly indicate that this secondary orthopyroxene has been produced at the expense of olivine along the grain boundaries and margins, suggesting silica-enriched metasomatic melt infiltrated through grain boundaries. Based on the geotectonic characteristics of Jeju Island and textural characteristics and major elements composition of mantle xenoliths, it is suggested that the silica-enriched melt/fluid could have derived from the ancient subducted slab, possibly in the mantle wedge, implying that the high $SiO_2$ activity in the lithospheric upper mantle beneath Jeju Island at that time.

제주도 신산리에 분포하는 알칼리현무암에 포획된 하즈버가이트와 레졸라이트 맨틀 포획암에는 조직적으로 뚜렷하게 구별되는 이차 사방휘석이 산출되어 다양한 정도로 교대작용을 받았음을 지시한다. 이차 사방휘석은 감람석의 가장자리나 입자경계에 형성되어 있으며, 코로나 혹은 포이킬리틱 조직을 보여준다. 이러한 조직은 감람석이 소모되면서 사방휘석이 만들어진 것을 나타내는 것으로, 실리카가 포화된 유체 또는 멜트가 관여한 교대작용이 있었음을 지시한다. 제주도의 조구조 특성, 맨틀 포획암의 조직 그리고 주원소 조성에 의하면 이 실리카가 포화된 멜트나 유체는 수렴경계에 형성되는 섭입대에서 유래된 것으로, 제주도 하부 상부맨틀 암석권은 제주도가 형성되기 이전에 맨틀웨지 환경에서 광범위한 실리카부화작용을 경험하였음을 시사한다.

Keywords

References

  1. 고기원, 박윤석, 박언배, 2004, 제주도 동부지역의 지하 지질분포와 $^{40}Ar-^{39}Ar$ 연대. 2004 대한지질학회 춘계학술답사, 대한지질학회, 29-50.
  2. 박준범, 권성택, 1996, 제주도 솔리아이트 화산활동. 암석학회지, 5, 66-83.
  3. 박준범, 박기화, 조등룡, 고기원, 1999, 제주도 제 4기 화산암류의 암석화학적 분류. 지질학회지, 35, 253-264.
  4. 엄영보, 양경희, 남복현, 황병훈, 김진섭, 2007, 제주도 알칼리 현무암에 포획된 반려암질 포획암, 광물학회지, 20, 103-114.
  5. 유재은, 양경희, 김진섭, 2010, 제주도 첨정석 페리도타이트 포획암의 조직 및 지화학적 특성과 그 관련성, 암석학회지, 19, 227-244.
  6. 윤성효, 고정선, 안지영, 1998, 제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구. 자원환경지질학회지, 31, 447-458.
  7. 윤성효, 고정선, 박정미, 2002, 제주도 남동부 태흥리 용암에 대한 암석학적 연구. 암석학회지, 11, 17-29.
  8. 이문원, 원종관, 이동영, 박계헌, 김문섭, 1994, 제주도 남사면 화산암류의 화산층서 및 암석학적 연구. 지질학회지, 30, 512-541.
  9. Arai, S., 1994, Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotite. Journal of Volcanology and Geothermal Research, 59, 279-293. https://doi.org/10.1016/0377-0273(94)90083-3
  10. Arai, S., Ishimaru, S. and Okrugin, V.M., 2003, Metasomatized harzburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: an implication for the metasomatic agent. The Island Arc, 12, 233-246. https://doi.org/10.1046/j.1440-1738.2003.00392.x
  11. Arai, S., Shimizu, Y., Morishita, T. and Ishida, Y., 2006, A new type of orthopyroxenite xenolith from Takashima, Southwest Japan: Silica enrichment of the mantle by evolved alkali basalt. Contributions to Mineralogy and Petrology, 152, 387-398. https://doi.org/10.1007/s00410-006-0117-0
  12. Arai, S., Abe, N. and Ishimaru, S., 2007, Mantle peridotites from the western Pacific. Gondwana Res., 11, 180-199. https://doi.org/10.1016/j.gr.2006.04.004
  13. Bali, E., Szab, C., Vaselli, O. and Trk, K., 2002, Significance of silicate melt pockets in upper mantle xenoliths from the Bakony-Balaton Highland Volcanic Field, Western Hungary. Lithos, 61, 79-102. https://doi.org/10.1016/S0024-4937(01)00075-5
  14. Bali, E., Zajacz, Z., Kovcs, I., Szab, Cs., Halter, W., Vaselli, O., Trk, K. and Bodnar, R.J., 2008, A quartz-bearing orthopyroxene-rich websterite xenolith from the Pannonian Basin, Western Hungary: Evidence for release of quartz-saturated melt from a subducted slab. Journal of Petrology, 49, 421-439. https://doi.org/10.1093/petrology/egm086
  15. Brenna, M., Cronin S.J., Cronin, I., Sohn, Y. and Nemeth, K., 2010, Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol., 160, 931-950. https://doi.org/10.1007/s00410-010-0515-1
  16. Choi, S.H., Lee, J.I., Park, C.H. and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. Island Arc, 11, 221-235. https://doi.org/10.1046/j.1440-1738.2002.00367.x
  17. Ertan, I.E. and Leeman, W.P., 1996, Metasomatism of Cascades subarc mantle: evidence from a rare phlogopite orthopyroxenite xenolith. Geology, 24, 451-454. https://doi.org/10.1130/0091-7613(1996)024<0451:MOCSME>2.3.CO;2
  18. Franz, L., Becker, K.-P., Kramer, W. and Herzig, P.M., 2002, Metasomatic mantle xenoliths from the Bismarck microplate (Papua New Guinea): Thermal evolution, geochemistry and extent of slab-induced metasomatism. Journal of Petrology, 43, 315-343. https://doi.org/10.1093/petrology/43.2.315
  19. Frey, F.A. and Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona; petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38, 129-178. https://doi.org/10.1016/0012-821X(78)90130-9
  20. Hamdy, A.M., Park, P.H., Lim, H.C. and Park, K.D., 2004, Present-day relative displacements between the Jeju Island and the Korean peninsula as seen from GPS observations. Earth Planets Space, 56, 927-931. https://doi.org/10.1186/BF03352540
  21. Kelemen, P.B., Hart, S.R. and Bernstein, S., 1998, Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci. Lett., 164, 387-406. https://doi.org/10.1016/S0012-821X(98)00233-7
  22. Kim, K.H., Nagao, K., Suzuki, K., Tanaka, T. and Park, E.J., 2003, Evidences of the presence of old continental basement in Jeju volcanic Island, South Korea, revealed by Radiometric ages and Nd-Sr isotopes of granitic rocks. Journal of Geochemical Exploration, 36, 421-441.
  23. Kim, K.H., Nagao, K., Tanaka, T., Sumino, H., Nakamura, T., Okuno, M., Lock, J-B., Youn, J.S. and Song, J., 2005, He-Ar and Nd--Sr isotopic compositions of ultramafic xenoliths and host basalts from the Korean peninsula. Geochem. J., 39, 341-356. https://doi.org/10.2343/geochemj.39.341
  24. Kubo, A., and Fukuyama, E., 2003, Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth Planet Sci. Lett., 210, 305-316. https://doi.org/10.1016/S0012-821X(03)00132-8
  25. Lee, M.W., 1982, Petrology and geochemistry of Jeju volcanic island, Korea. The Science Report of the Tohoku Imperial University Section Series III, 15, 177-256.
  26. McInnes, B.I.A., Gregoire, M., Binns, R.A., Herzig, P.M., and Hannington, M.,D., 2001, Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatized mantle wedge xenoliths. Earth Planet Sci. Lett., 188, 169-183. https://doi.org/10.1016/S0012-821X(01)00306-5
  27. Morishita, T., Arai, S. and Green, D.H., 2003a, Evolution of low-Al orthopyroxene in the Horoman Peridotite, Japan: an unusual indicator of metasomatising fluids. J. Petrol., 44, 1237-1246. https://doi.org/10.1093/petrology/44.7.1237
  28. Morishita, T., Arai, S., and Tamura, A., 2003b, Petrology of an apatite rich layer in the Finero phlogopite-peridotite, Italian Western Alps; implications for evolution of a metasomatising agent. Lithos, 69, 37-49. https://doi.org/10.1016/S0024-4937(03)00046-X
  29. Nakamura, E., Campbell, I.H., Mcclloch, M.T. and Sun, S.S., 1989, Chemical geodynamics in a back arc region around the Sea of Japan: implications for the genesis of alkaline basalts in Japan, Korea and China. J. Geophy. Res., 94, 4634-4654. https://doi.org/10.1029/JB094iB04p04634
  30. Nekvasil, H., Dondlini, A., Horn, J., Filiberto, J., Long, H. and Lindsley, D.H., 2004, The origin and evolution of silica-saturated alkalic suites: an experimental study. J. Petrol., 45, 693-721. https://doi.org/10.1093/petrology/egg103
  31. Nixon, P.H., 1987, Mantle Xenoliths. John Wiley & Sons, New York.
  32. Shimizu, Y., Arai, S., Morishita, T. and Yurimoto, H., 2004, Petrochemical characteristics of felsic veins in mantle xenoliths from Tallante (SE Spain): an insight into activity of silicic melt within the mantle wedge. Trans R. Soc. Edinburgh Earth Sci., 95, 265-276. https://doi.org/10.1017/S0263593304000227
  33. Smith, D. and Riter, J.C.A., 1997, Genesis and evolution of low-Al orthopyroxene in spinel peridotite xenoliths, Grand Canyon field, Arizona, USA. Contrib. Mineral. Petrol., 127, 391-404. https://doi.org/10.1007/s004100050288
  34. Smith, D., Riter, J.C.A. and Mertzman, S.A., 1999, Erratum to "water-rock interactions, orthopyroxene growth and Sienrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States". Earth Planet Sci. Lett., 167, 347-356. https://doi.org/10.1016/S0012-821X(99)00027-8
  35. Szab, Cs., Falus, Gy., Zajacz, Z., Kovacs, I. and Bali, E., 2004, Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics, 393, 119-137. https://doi.org/10.1016/j.tecto.2004.07.031
  36. Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K. and Lee, M.W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: Plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553.
  37. White, J.D., 2001. An introduction to igneous and metamorphic petrology. Prentice Hall, New Jersey, 686p.
  38. Xu, X., Oreilly, S.Y., Griffin, W.L., Zhou, X. and Huang, X., 1998, The nature of the Cenozoic lithosphere at Nushan, Eastern China. In Flower M.F.J., Chung S.L., Lo, C.H. and Lee T.Y.(eds.), Mantle dynamics and plate interactions in east Asia American Geophysical. Union, Wasington D.C., Geodynamics Volume, 27, 167-196.
  39. Yang, K., Hidas, K., Falus, G., Szab, C., Nam, B., Kovcs, I. and Hwang, B., 2010, Relation between mantle shear zone deformation and metasomatism in spinel peridotite xenoliths of Jeju Island (South Korea): Evidence from olivine CPO and trace elements. J. Geodynamics, 50, 424-440. https://doi.org/10.1016/j.jog.2010.05.005

Cited by

  1. Geochemistry of anorthositic xenolith and host tholeiite basalt from Jeju Island, South Korea vol.18, pp.2, 2014, https://doi.org/10.1007/s12303-013-0060-9
  2. Hydrous Minerals (Phlogopite and Amphibole) from Basaltic Rocks, Jeju Island: Evidences for Modal Metasomatism vol.21, pp.1, 2012, https://doi.org/10.7854/JPSK.2012.21.1.013