• Title/Summary/Keyword: secondary ions

Search Result 227, Processing Time 0.025 seconds

Physical, Chemical and Optical Properties of an Asian Dust and Haze Episodes Observed at Seoul in 2010 (2010년 서울에서 관측한 황사와 연무사례의 물리, 화학, 광학적 특성비교)

  • Song, Seungjoo;Kim, Jeong Eun;Lim, Eunha;Cha, Joo-Wan;Kim, Jhoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • This study investigated physicochemical and optical characteristics for three episodes of Asian dust, stagnant haze and long-range transport haze and for one clean day. $PM_{10}$ mass concentration during Asian dust and two haze days was increased by 2~9 times compared to that of clean episode. During Asian dust episode, coarse particle concentration was increased and the mass concentration of calcium in a coarse mode ($1.8{\sim}10{\mu}m$) was $5.4{\mu}g/m^3$ which was 7 times higher than that of clean episode. The calcium was presented as a form of $CaCO_3$ in a coarse mode. During the two haze episodes, fine particle (< $1.8{\mu}m$) concentration was increased and secondary inorganic pollutants such as sulfate, ammonium and nitrate composed of 90% of the total ions. $(NH_4)_2SO_4$ and $NH_4NO_3$ were dominant in a fine mode for stagnant haze episode. But they were the most dominant form in both fine mode and coarse mode for long-range transport haze episode. According to the optical properties for each episode (Asian dust, stagnant haze and long-range transport haze) were classified as dust, black carbon and mixture, respectively.

Novel Naphthalene Based Lariat-Type Crown Ethers Using Direct Single Electron Transfer Photochemical Strategy

  • Park, Hea Jung;Sung, Nam Kyung;Kim, Su Rhan;Ahn, So Hyun;Yoon, Ung Chan;Cho, Dae Won;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3681-3689
    • /
    • 2013
  • This study explored a direct SET-photochemical strategy to construct a new family of thioene conjugated-naphthalamide fluorophore based lariat-crown ethers which show strong binding properties towards heavy metal ions. Irradiations of designed nitrogen branched (trimethylsilyl)methylthio-terminated polyethylenoxy-tethered naphthalimides in acidic methanol solutions have led to highly efficient photocyclization reactions to generate naphthalamide based lariat type thiadiazacrown ethers directly in chemo- and regio-selective manners which undergo very facile secondary dehydration reactions during separation processes to produce their corresponding amidoenethio ether cyclic products tethered with electron donating diethyleneoxy- and diethyenethio-side arm chains. Fluorescence and metal cation binding properties of the lariat type enamidothio products were examined. The photocyclized amidoenethio products, thioene conjugated naphthalamide fluorophore containing lariat-thiadiazacrowns exhibited strong fluorescence emissions in region of 330-450 nm along with intramolecular exciplex emissions in region of 450-560 nm with their maxima at 508 nm. Divalent cation $Hg^{2+}$ and $Pb^{2+}$ showed strong binding to sulfur atom(s) in side arm chain and atoms in enethiadiazacrown ether rings which led to significant enhancement of fluorescence from its chromophore singlet excited state and concomitant quenching of exciplex emission. The dual fluorescence emission responses towards divalent cations might provide a new guide for design and development of fluorescence sensors for detecting those metals.

A Study on the Electrode Characteristics of Hypo-Stoichiometric Zr-based Hydrogen Storage Alloys

  • Lee, Sang-Min;Kim, Seoung-Hoe;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.197-210
    • /
    • 1999
  • The hydrogen storage performance and electrochemical properties of $Zr_{1-X}Ti_X(Mn_{0.2}V_{0.2}Ni_{0.6})_{1.8}$(X=0.0, 0.2, 0.4, 0.6) alloys are investigated. The relationship between discharge performance and alloy characteristics such as P-C-T characteristics and crystallographic parameters is also discussed. All of these alloys are found to have mainly a C14-type Laves phase structure by X-ray diffraction analysis. As the mole fraction of Ti in the alloy increases, the reversible hydrogen storage capacity decreases while the equilibrium hydrogen pressure of alloy increases. Furthermore, the discharge capacity shows a maxima behavior and the rate-capability is increased, but the cycling durability is rapidly degraded with increasing Ti content in the alloy. In order to analyze the above phenomena, the phase distribution, surface composition, and dissolution amount of alloy constituting elements are examined by S.E.M., A.E.S. and I.C.P. respectively. The decrease of secondary phase amount with increasing Ti content in the alloy explains that the micro-galvanic corrosion by multiphase formation is little related with the degradation of the alloys. The analysis of surface composition shows that the rapid degradation of Ti-substituted Zr base alloy electrode is due to the growth of oxygen penetration layer. After comparing the radii of atoms and ions in the electrolyte, it is clear that the electrode surface becomes more porous, and that is the source of growth of oxygen penetration layer while accelerating the dissolution of alloy constituting elements with increasing Ti content. Consequently, the rapid degradation (fast growth of the oxygen-penetrated layer) with increasing Ti substitution in Zr-based alloy is ascribed to the formation of porous surface oxide through which the oxygen atom and hydroxyl ion with relatively large radius can easily transport into the electrode surface.

  • PDF

Syntheses of Tetradentate Nitrogen-Oxygen(N2O2)) Ligands with Substituents and the Determination of Stability Constants of Their Heavy(II) Metal Complexes (치환기를 가진 질소-산소(N2O2)계 네 자리 리간드의 합성과 중금속(II)이온 착화합물의 안정도상수 결정)

  • Kim, Sun-Deuk;Seol, Jong-Min
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.421-435
    • /
    • 2012
  • Novel $N_2O_2$ tetradentate ligands, H-3BPD and H-2BPD were synthesized. Hydrochloric acid salts of Br-3BPD, Cl-3BPD, Br-2BPD and Cl-2BPD having Br and Cl substituents at the $para$ position of the phenol hydroxyl group, were synthesized. The ligands were characterized by C. H. N atomic analysis, $^1H$ NMR, $^{13}C$ NMR, UV-visible, and mass spectra. The proton dissociation constants ($logK_n{^H}$) of the phenol hydroxyl group and secondary amine of the synthesized $N_2O_2$ ligands were shown by four step wise values. The orders of the calculated overall proton dissociation constants ($log{\beta}_p$) were Br-3BPD < Cl-3BPD < H-3BPD in case of 3BPD and Br-2BPD < Cl-2BPD < H-2BPD in case of 2BPD respectively. The order agreed well with that of $para$ Hammett substituent constants(${\delta}_p$). The stability constants($logK_{ML}$) of the complexes between the synthesized ligands and transition metal(II) ions agreed with the order of $log{\beta}_p$ of the ligands. The order of the $logK_{ML}$ value of the each transition metal (II) ion was Co(II) < Ni(II) < Cu(II) > Zn(II) > Cd(II) > Pb(II), which agreed well with that of Iriving-Williams series.

A geochemical study on the saline waters circulating in an ash disposal pond of Seocheon Power Plant. Korea

  • Kim, Kang-Joo;Park, Seong-Min;Kim, Jin-San;Natarajan Rajmohan;Hwang, Gab-Soo;Yun, Seong-Taek;Kim, Hyun-Jung;Kim, Suk-Hwi
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.338-341
    • /
    • 2004
  • This study was carried out to understand the geochemistry of saline water circulating in an ash disposal pond of Seocheon power plant, Korea. For this study, ash pond waters, slurry water and seawater samples were collected and analyzed for major ions and trace elements. Results show that ash pond waters and slurry water are alkaline in nature due to high calcium content, and have high concentration of Ca, B, Li, As, Ba, Al, Si and Mn over seawater, suggest that these elements leached from fly ash even at high alkaline condition and ionic strength. Slurry water has high concentration of B, Ba, Li, Mn, Si and Sr compare to ash pond waters, expresses that these elements seem to be easily reached at initial stage fly ash-water interaction, and also might be associated with the surface of the fly ash particles. Additionally, PHREEQC program predicted several secondary solid phases, which are also influenced in the leaching of elements in to the saline water.

  • PDF

Magnetic Sector SIMS의 Sample Holder 위치에 따르는 RSF (Relative Sensitivity Factor) 변화 검증

  • 홍성윤;이종필;홍태은;윤명노;민경열;이순영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.192-192
    • /
    • 1999
  • SIMS(Secondary Ion Mass Spectrometry)는 다른 표면 분석장비와 비교하여^g , pp m,^g , pp b 단위의 미량분석이 가능한 장비로서, 특히 depth Profiling을 위한 dynamic SIMS는 Mass Spectrometer의 종류에 따라 Quadrupole SIMS (Q-SIMS)와, Magnetic Sector SIMS (M-SIMS)로 분류된다. 한편, Q-SIMS와 달리 M-SIMS의 경우, Transmission을 높여 주기 위해 Sample Holder에 수 keV의 bias를 걸어 주는데, 이로 인하여 분석 원소에 대한 Sensitivity가 향상되어 지는 반면, RSF의 변화와 같은 분석상의 Artifact가 발생하게 된다. 일반적으로 Q-SIMS의 경우에는 RSF의 RSD(Relative Standard Deviation)가 1%이내에서 보고되고 있지만 M-SIMS에 있어서는 이러한 Deviation이 M-SIMS보다 크게 나타난다. 이 차이는 주로 Sample Holder와 Immersion Lens 사이에 형성되는 Magnetic Field의 왜곡과 Spectrometer의 문제로부터 발생한다. 본 논문에서는 Sample Holder의 종류 및 holder so window 위치에 따라 RSF의 차이를 측정하고 그 data를 RS/1 통계 Package를 이용하여 계량적으로 검증하였으며, 그 차이의 원인과 대책을 제시하고자 한다. 실험에 사용된 Sample은 Si(100) p-type Wafer에 Boron을 이온 주입하여 제작하였다. 이온 주입 장비는 Varian E-500HP이며, 5.0E13 ions/cm2의 dose양을 80keV의 Energy로 각각 7도와 22도의 Tilt와 Twist Angle로 이온 주입을 하였다. SIMS분석에 사용된 Sample Holder는 각각 3 Hole, 9 Hole Type HOlder이며, 분석은 Cameca IMS-6f를 사용하여 B에 대한 Matrix Peak으로 28Si++를 얻었다. 실험 결과 3 Hole Type Sample Holder의 경우 RSF의 RSD는 5.84%, 9Hle Type Sample Holder의 경우는 14.3%로 나타났으나 분석 Window의 위치에 따르는 Grouping을 실시한 결과, 3 Hole Type Sample Holder의 경우 1.2%, 9Hole Type Sample Holder의 경우 9.8%로 RSF의 변화가 감소하였다. 이러한 Deviation은 Sample Holder를 Mount시킬 때 세 개의 Screw를 이용하여 Immersion Lens와의 평형을 잡아주기 때문에 발생하며, 이 Munting을 정확히 해줌으로써 RSF의 변화를 줄일 수 있으나, 실제로 완벽한 Mounting이 불가능하기 때문에 RSF를 일정하게 하기 위해서는 Sample Holder so Window의 취치를 일정하게 설정한 후 분석을 실시해야 한다고 판단된다.

  • PDF

SIMS Depth Profiling Analysis of Cl in $TiCl_4$ Based TiN Film by Using $ClCs_2^+$ Cluster Ions

  • Gong, Su-Jin;Park, Sang-Won;Kim, Jong-Hun;Go, Jung-Gyu;Park, Yun-Baek;Kim, Ho-Jeong;Kim, Chang-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.161-161
    • /
    • 2012
  • 질화티타늄(Titanium Nitride, TiN)은 화학적 안정성이 우수하고, N/Ti 원소 비율에 따라 열전도성 및 전기전도성이 변화하는 특성을 가지고 있어서 Metal Insulator Silicon (MIS) 나 Metal Insulator Metal (MIM) capacitor의 metal electrode 물질로 적용되고 있다. $TiCl_4$$NH_3$ gas를 이용하여 $500^{\circ}C$ 이상의 고온 조건에서 Chemical Vapor Deposition (CVD) 법으로 TiN 박막을 증착하는 방식이 가장 널리 사용되고 있으나, TiN 박막 내의 Chlorine (Cl) 원소가 SiO2 두께와 누설전류 밀도를 증가시키는 요인으로 작용하므로 Cl의 거동 및 함량 제어를 통한 전기적인 특성의 향상 평가가 요구되고 있다[1-3]. 본 실험에서는 $SiO_2$ 위에 TiN을 적층 한 구조에서 magnetic sector type의 Secondary Ion Mass Spectrometry (SIMS)를 이용하여 Cl 원소의 검출도 개선 방법을 연구하였다. 일반적인 $Cs^+$ 이온을 이용하여 $Cl^-$ 이온을 검출할 경우에는 TiN 하부에 $SiO_2$가 존재함에 따른 charging effect와 mass interference가 발생되는 문제점이 관찰되었다. 이를 개선하기 위해 Cl과 Cs 원소가 결합된 $ClCs^+$ cluster ion을 검출하는 방법을 시도하였으나, Cl- 이온 검출 방식에 비해 오히려 낮은 검출도를 나타내었으나 Cl 원소가 속하는 halogen 족 원소의 높은 전자 친화도 특성을 이용한 $ClCs_2^+$ cluster ion을 검출하는 방법[4]을 적용한 경우에는 $ClCs^+$ 방식에 비해 검출도가 3order 개선되는 결과를 확보하였으며, 이 결과를 토대로 Cl dose ($atoms/cm^2$) 와 Rs (ohm/sq) 간의 상관 관계에 대해 고찰하고자 한다.

  • PDF

Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium (황산염환원미생물에 의한 금속재료의 부식 특성)

  • Lee, Seung Yeop;Jeong, Jongtae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • To understand characteristics of biogeochemical corrosion for the metal canisters that usually contain the radioactive wastes for a long-term period below the ground, some metal materials consisting of cast iron and copper were reacted for 3 months with D. desulfuricans, a sulfate-reducing bacterium, under a reducing condition. During the experiment, concentrations of dissolved metal ions were periodically measured, and then metal specimen and surface secondary products were examined using the electron microscopy to know the chemical and mineralogical changes of the original metal samples. The metal corrosion was not noticeable at the absence of D. desulfuricans, but it was relatively greater at the presence of the bacterium. In our experiment, darkish metal sulfides such as mackinawite and copper sulfide were the final products of biogeochemical metal corrosion, and they were easily scaled off the original specimen and suspended as colloids. For the copper specimen, in particular, there appeared an accelerated corrosion of copper in the presence of dissolved iron and bacteria in solution, probably due to a weakening of copper-copper binding caused by a growth of other phase, iron sulfide, on the copper surface.

Structure Analysis of Li-ion Battery Using Neutron Beam Source (중성자를 이용한 리튬이온 이차전지 전극 구조분석)

  • Kim, Chang-Seob;Park, Heon-Yong;Liang, Lianhua;Kim, Ji-Young;Seong, Baek-Seok;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.20-24
    • /
    • 2007
  • Lithium ion secondary battery has been applied widely to portable devices, and has been studied for application to high power electric cell system such as power tool or hybrid electronic vehicle. The structure change of the electrodes materials occur when lithium ions move between electrodes. Neutron or X-rays can analyze the structure of electrode. The advantage of X-rays is convenient in test. However X-rays is scattered by electron cloud in atoms. Therefore, The elucidation for correct position of lithium is difficult with X-rays because lithium has small atomic weight. Neutron analysis techniques could solve this problem. In this review, We wish to discuss about structure analysis and the principle of structural characterization method using neutron beam source.

Electrochemical Lithium Intercalation within Graphite from Ionic Liquids containing BDMI+ Cation (BDMI+ 양이온을 함유한 이온성 액체로부터 흑연으로의 전기화학적 리튬 삽입)

  • Lee, You-Shin;Jeong, Soon-Ki;Lee, Heon-Young;Kim, Chi-Su
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • In situ electrochemical atomic force microscopy (ECAFM) observations of the surface of highly oriented pyrolytic graphite (HOPG) was performed before and after cyclic voltammetry in lithium bis(fluorosulfonyl)imide (LiTFSI) dissolved in 1-buthyl-2,3-dimethylimidazolium (BDMI)-TFSI to understand the interfacial reactions between graphite and BDMI-based ionic liquids. The formation of blisters and the exfoliation of graphene layers by the intercalation of $BDMI^+$ cations within HOPG were observed instead of reversible lithium intercalation and de-intercalation. On the other hand, lithium ions are reversibly intercalated into the HOPG and de-intercalatied from the HOPG without intercalation of the $BDMI^+$ cations in the presence of 15 wt% of 4.90 mol/$kg^{-1}$ LiTFSI dissolved in propylene carbonate (PC). ECAFM results revealed that the concentrated PC-based solution is a very effective additive for preventing $BDMI^+$ intercalation through the formation of solid electrolyte interface (SEI).