• 제목/요약/키워드: secondary emission

검색결과 399건 처리시간 0.022초

저에너지 불활성 기체이온에 의한 AC 플라즈마 디스플레이 패널용 MgO막의 이차전자 방출특성에 관한 연구 (Study of the characteristics of Secondary Electron Emission from MgO Layer for Low-Energy Noble Ions)

  • 이상국;김재홍;이지화;황기웅
    • 한국진공학회지
    • /
    • 제11권2호
    • /
    • pp.108-112
    • /
    • 2002
  • AC 플라즈마 디스플레이 패널의 보호막으로 널리 사용되고 있는 MgO막의 2차 전자 방출계수를 저에너지 불활성 기체이온에 대해 펄스 이온빔 기법으로 측정하였다. 실리콘 산화막의 헬륨이온에 의한 2차 전자 방출계수는 300 eV에서 0.82를 보였지만 50 eV에서는 0.22보여 운동에너지에 대한 상당한 의존성을 보였다. 한편, MgO막의 이차전자 방출계수는 이온에 의한 스퍼터링이 지속됨에 따라 0.62에서 0.3으로 감소함으로써 이온충돌이 MgO의 이차전자 방출계수에 상당한 영향을 미치는 것을 확인할 수 있었다.

Ultra accelerated molecular dynamics study on electronic structure and luminous efficacy of PDP protecting layer

  • Takaba, Hiromitsu;Serizawa, Kazumi;Suzuki, Ai;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Kubo, Momoji;Kajiyama, Hiroshi;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.169-172
    • /
    • 2009
  • We developed ultra-accelerated quantum chemical molecular dynamics and characterization simulators for study and design of plasma display panel (PDP) related materials. By use of these simulators, realistic structure of PDP materials is drawn on the computer. Furthermore, based on the structures, various properties such as secondary electron emission coefficient are successfully evaluated. In this report, we will discuss the theoretical secondary electron emission coefficient for several protecting layer materials and the effect of surface structure on the properties based on the result of atomistic simulations.

  • PDF

음향방출 기술을 이용한 철근콘크리트 보의 휨 파괴 손상평가 (Damage Assessment of Reinforced Concrete Beams Under Flexural Failure Mode Using Acoustic Emission Testing)

  • 김다위;이성로;박원석
    • 한국안전학회지
    • /
    • 제38권2호
    • /
    • pp.36-43
    • /
    • 2023
  • In this study, a four-point bending test was conducted to assess and detect the damage to reinforced concrete structures using the acoustic emission (AE) technique. Based on the crack investigation results, flexural failure was classified into four stages and compared with the characteristic analysis results of AE parameters. The parametric characterization indicated that the activity of the primary AE signal was high in the early stage, and that of the second signal increased after the flexural cracks stabilized. Because the secondary AE signal included noise generated by friction, parameter-based analysis for damage assessment was performed using the primary signal; the secondary signal was used as complement. The activity analyses of the primary and secondary signals effectively classified crack propagation; however, determining the macrocracks and yielding of reinforcing bars had certain limitations. Nevertheless, applying the damage index with cumulative AE energy is a complementary technique for detecting and assessing structure damage that well detects the occurrence of macrocracks.

미분탄 버너의 설계인자가 NOx 생성에 미치는 영향 (The Effect of Pulverized Coal Burner Design Parameters on NOx Emission)

  • 김상현;송시홍;이건명;김혁제;이익형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.102-105
    • /
    • 2001
  • Numerical simulations of coal combustion were carried out to identify what kind of burner design parameters are affecting the NOx emission. Where used burner design parameters are primary air velocity, secondary air velocity, $2^{nd}/3^{rd}$ air ratio, tertiary air velocity, and tertiary air injection location. Taguchi method was used to find the effective burner design parameters related to NOx formation. The results of numerical simulations showed that secondary air velocity and $2^{nd}/3^{rd}$ air ratio was the key parameters reducing the NOx emission. The total number of simulation cases was reduced by Taguchi method.

  • PDF

휴대전자기기용 저용량 리튬이온 배터리의 충방전 열화 기구 분석 및 모니터링 (Evaluation and monitoring of degradation mechanism of Li-ion battery for portable electronic device)

  • 변재원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권2호
    • /
    • pp.129-140
    • /
    • 2013
  • As a fundamental experimental study for reliability improvement of lithium ion secondary battery, degradation mechanism was investigated by microscopic observation and acoustic emission monitoring. Microstructural observation of the decomposed battery after cycle test revealed mechanical and chemical damages such as interface delamination, microcrack of the electrodes, and solid electrolyte interphase (SEI). Acoustic emission (AE) signal was detected during charge and discharge of lithium ion battery to investigate relationships among cumulative count, discharge capacity, and microdamages. With increasing number of cycle, discharge capacity was decreased and AE cumulative count was observed to increase. Observed damages were attributed to sources of the detected AE signals.

모형 가스터빈 연소기의 연소 및 배출물 특성 (Combustion and Emission Characteristics of Model Gas Turbine Combustor)

  • 최병륜;김태한
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.240-249
    • /
    • 1994
  • The basic experiments for designing the effective gas turbine combustor were performed. There are several factors that define the characteristics of gas turbine combustor. Among them, experiment was focused on swirl effects by three types of swirler with different swirl numbers(0.0, 0.38, and 0.62). Particularly, an interest was concentrated on primary zone where the flame characteristics of total combustor was dominated strongly and secondary zone where the remaining unburned gas was reacted again or cooling effect was done according to degree of swirl intensity. For this study, following measurements have been carried out, that is, time mean and fluctuating temperature, exhaust gas composition including NO concentration, and ion current. From this study, it was found that swirl intensity affects largely not only flame style but also emission formation, furthermore that it is important to select proper swirl intensity.

저공해 스토커형 도시폐기물 소각로 설계를 위한 열유동 수치해석 연구 (The Study of Numerical Simulation on the Thermal Flow Performance for the Design of Low Emission Stoker Type Municipal Waste Incinerator)

  • 전영남;송형운;김미환
    • 한국환경과학회지
    • /
    • 제11권6호
    • /
    • pp.543-551
    • /
    • 2002
  • A Numerical simulation on the thermal flow performance was carried out to propose the incinerator type for the domestic refuses and to investigate the design factor and operating conditions. The SSTI(Standard Stoker Type Incinerator) proposed in this study was modified from the type with central f)ow. It has the characteristics of good mixing between refuse and hot combustion gas in primary combustion chamber and between unburned gas inflowing and secondary air jet in secondary chamber. By predictive results, the SSTI was no recirculation zone in secondary chamber so that mixing time was increased with high residence time. It has good characteristics of combustion and low emission. Parametric screening studies have been understood with phenomenon of combustion in incinerator.

환경친화형 연료분할-고속분사식 버너 개발 (A Development of Environmental-friendly Burner with High Injection Velocity by Multi-staged Fuel-injection)

  • 추재민;고영기;김종우;김철민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.148-155
    • /
    • 2005
  • In this study, Development of 300,000kcal/hr high velocity Injection burner with fuel multi-stage was performed using experiments. The characteristics of NOx emission in multi fuel/air staged combustor have been experimentally studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is largest access air combustion and the secondary flame is complete combustion zone, where most of fuel bums. Experiments were performed on an industrial scale in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. Comparison of outlet NOx and outlet Temperature under various air rate and primary/ secondary fuel ratio was performed. The test demonstrated that NOx emission con be reduced by 70% in accordance with operating conditions.

  • PDF

An Experimental Study on the Combustion Characteristics of a Low NOx Burner Using Reburning Technology

  • Ahn, Koon-Young;Kim, Han-Seok;Son, Min-Gyu;Kim, Ho-Keun;Kim, Yong-Mo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.950-958
    • /
    • 2002
  • The combustion characteristics of a low NOx burner using reburning technology have been experimentally studied. The return burner usually has three distinct reaction zones which include the primary combustion zone, the reburn zone and the burnout zone by provided secondary air. NOx is mainly produced in a primary combustion zone and a certain portion of NOx can be converted to nitrogen in the rebury zone. In the burnout zone, the unburned mixtures are completely oxidated by supplying secondary air. Liquefied Petroleum Gas (LPG) was used as main and reburn fuels. The experimental parameters investigated involve the main/reburn fuel ratio, the primary/secondary air ratio, and the injection location of rebury fuel and secondary air. When the amount of return fuel reaches to the 20-30% of the total fuel used, the overall NO reduction of 50% is achieved. The secondary air is injected by two different ways including vertical and parallel injection. The injector of secondary air is located at the downstream region of furnace for a vertical-injection mode, which is also placed at the inlet primary-air injection region for a parallel-injection mode. In case of the vertical injection of the secondary air flow, the NOx formation of stoichiometric condition at a primary combustion zone is nearly independent of the rebury conditions (locations, fuel/air ratios) while the NOx emission of the fuel-lean condition is considerably influenced by the reburn conditions. In case of the parallel injection of the secondary air, the NOx emission is sensitive to the air ratio rather than the fuel ratio and the reburning process often coupled with the multiple air-staging and fuel-staging combustion processes.

역방향 2차 공기 주입 방식을 적용한 소각 연소로의 Thermal NOx 및 CO 배출특성에 대한 축소모형실험 연구 (Experimental Study on Thermal NOx and CO Emission in a Laboratory-Scale Incinerator with Reversed Secondary Air Jet Injection)

  • 최종균;최우성;신동훈
    • 대한기계학회논문집B
    • /
    • 제40권8호
    • /
    • pp.503-510
    • /
    • 2016
  • 일반적으로 연소로는 연료의 연소과정에서 NOx, CO등의 공해물질을 배출한다. 본 연구는 소각연소로를 대상으로 2차 공기를 연소가스 흐름의 역방향으로 주입시키는 방법의 NOx 및 CO 배출특성에 대한 연구를 수행하였다. 연구의 주요변수는 1, 2차 공기의 유량비와 2차 공기의 투입 방향으로 설정하였다. 변수에 따른 NOx 및 CO 배출특성을 묘사하기 위해서 축소모형실험 연구를 수행하였다. 실험결과 1차 공기유량이 감소하고 2차 공기유량이 증가할수록 NOx가 감소되다가 일정 유량비 이상에서 다시 NOx가 다소 증가하는 형태가 나타났다. 역방향으로 빠른 유속의 2차 공기가 투입될 때 연소로 내부에 유동 재순환이 발생하여 혼합이 증가하고 이로 인해서 온도 영역이 고르게 분포되는 것으로 나타났으며 그 결과로서 thermal NOx의 저감 효과를 확인할 수 있었다. CO는 2차 공기가 역방향에서 높은 비율로 투입되는 조건이외에서는 측정되지 않았다. 측정된 경우도 CO의 농도는 2 ppm 이내로 안정적인 연소 조건으로 나타났다.