• Title/Summary/Keyword: secondary emission

Search Result 399, Processing Time 0.025 seconds

Fabrication of Atmospheric Coplanar Dielectric Barrier Discharge and Analysis of its Driving Characteristics (평면형 대기압 유전장벽방전장치의 제작 및 동작특성분석)

  • Lee, Ki-Yung;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.80-84
    • /
    • 2014
  • The discharge characteristics of Surface Dielectric Barrier Discharge (SDBD) reactor are investigated to find optimal driving condition with adjusting various parameter. When the high voltage with sine wave form is applied to SDBD source, successive pulsed current waveforms are observed owing to multiple ignitions through the long discharge channel and wall charge accumulation on the dielectric surface. The discharge voltage, total charge between dielectrics, mean energy and power are calculated from measured current and voltage according to electrode gap and dielectric thickness. Discharge mode transition from filamentary to diffusive glow is observed for narrow gap and high applied voltage case. However, when the diffusive discharge is occurred with high applied voltage, the actual firing voltage is always lower than that with low driving voltage. The $Si_3N_4$, $MgF_2$, $Al_2O_3$ and $TiO_2$ are considered for dielectric protection and high secondary electron emission coefficient. SDBD with $MgF_2$ shows the lowest breakdown voltage. $MgF_2$ thin film is proposed as a protection layer for low voltage atmospheric dielectric barrier discharge devices.

Effects of Gd2O3 Addition on Optical and Electrical Properties of MgO Films as a Protective Layer for AC PDPs (Gd2O3 첨가에 따른 AC PDP 보호막용 MgO 박막의 광학적.전기적 특성)

  • Kim, Chang-Il;Lim, Eun-Kyeong;Park, Young-Jun;Lee, Young-Jin;Paik, Jong-Hoo;Choi, Eun-Ha;Juang, Seok;Kim, Jeong-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.620-625
    • /
    • 2007
  • The effects of $Gd_2O_3$ addition and sintering condition on optical and electrical properties of MgO films as a protective layer for AC plasma display panels were investigated. Doped MgO films prepared by the e-beam evaporation have a higher ${\Upsilon}$ (secondary electron emission coefficient) than pure MgO protective layer. Relative density and grain size increased with amount of $Gd_2O_3$ up to 100 ppm and then decreased further addition. These results showed that discharge properties and optical properties of MgO protective layers seemed to be closely related with microstructure factors such as relative density and grain size. Good optical and electrical properties of ${\Upsilon}$ of 0.138, surface roughness of 5.77 nm and optical transmittance of 95.76 % were obtained for the MgO+100 ppm $Gd_2O_3$ protective layer sintered at $1700^{\circ}C$ for 5 hrs.

Efficient Top-Emitting Organic Light Emitting Diode with Surface Modified Silver Anode

  • Kim, Sung-Jun;Hong, Ki-Hyon;Kim, Ki-Soo;Lee, Ill-Hwan;Lee, Jong-Lam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.550-553
    • /
    • 2010
  • The enhancement of quantum efficiency using a surface modified Ag anode in top-emitting organic light emitting diodes (TEOLEDs) is reported. The operation voltage at the current density of $1\;mA/cm^2$ of TEOLEDs decreased from 9.3 V to 4.3 V as the surface of anode coated with $CuO_x$ layer. The work function of these structures were quantitatively determined using synchrotron radiation photoemission spectroscopy. Secondary electron emission spectra revealed that the work function of the Ag/$CuO_x$ structure is higher by 0.6 eV than that of Ag. Thus, the $CuO_x$ structure acts as a role in reducing the hole injection barrier by about 0.6 eV, resulting in a decrease of the turn-on voltage of top-emitting light emitting diodes.

A Two-Dimensional Particle-in-cell Simulation for the Acceleration Channel of a Hall Thruster

  • Lim, Wang-Sun;Lee, Hae-June;Lee, Jong-Sub;Lim, Yu-Bong;Seo, Mi-Hui;Choe, Won-Ho;Seon, Jong-Ho;Park, Jae-Heung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.557-560
    • /
    • 2008
  • A two-dimensional particle-in-cell(PIC) simulation with a Monte-Carlo Collision(MCC) has been developed to investigate the discharge characteristics of the acceleration channel of a HET. The dynamics of electrons and ions are treated with PIC method at the time scale of electrons in order to investigate the particle transport. The densities of charged particles are coupled with Poisson's equation. Xenon neutrals are injected from the anode and experience elastic, excitation, and ionization collisions with electrons, and are scattered by ions. These collisions are simulated by using an MCC model. The effects of control parameters such as magnetic field profile, electron current density, and the applied voltage have been investigated. The secondary electron emission on the dielectric surface is also considered.

  • PDF

Fate and Characteristics of Dissolved Organic Matters in a Water Reclamation Facility, Korea (하수처리수 재이용시설의 공정별 용존유기물질 거동 및 특성)

  • Kwon, Eun-Kwang;Lee, Wontae
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.355-362
    • /
    • 2021
  • This study investigated the fate of dissolved organic matter (DOM) in a water reclamation facility (WRF) in Korea. The WRF consists of coagulation, sedimentation, microfiltration, and reverse osmosis (RO) components. The production capacity of WRF is 90,000 m3/day. The reclaimed water is reused as industrial water. We also characterized DOM in raw, processed, and finished waters based on analysis of dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UVA254), fluorescence excitation emission matrix (FEEM), and DOC fractions via liquid chromatography-organic carbon detection (LC-OCD). Based on the results of DOC, UVA254, and FEEM analyses, neither the coagulation/sedimentation nor the microfiltration at the WRF effectively removed DOM. The RO process removed more than 94% of DOM. The raw water (i.e., secondary treated effluent obtained from a wastewater treatment plant) exhibited tryptophan-like peaks, which are a promising marker of wastewater, in the FEEM analysis. Coagulation and microfiltration failed to eliminate the wastewater marker, whereas RO completely removed it. The raw water also carried high levels (89.4%) of hydrophilic and low-molecular weight substances, which are difficult to remove via coagulation-sedimentation or microfiltration. Humic substance was a major component of the hydrophilic fractions. Based on the LC-OCD analysis, RO effectively removed the humic and polymeric materials from DOM.

Characteristics of Co-Combustion of Wood Pellet with Sub-Bituminus Coal in A Pilot CFB Combustor (Pilot 순환유동층 연소장치에서의 목재펠릿과 아역청탄 혼소 특성)

  • KIM, DONG WON;PARK, KYEONG IL;LEE, JONG MIN;BAE, YONG CHAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.436-447
    • /
    • 2019
  • The circulating fluidized bed boiler has an advantage that can burn a variety of fuels from low-grade fuel to coal. In this study, for the design of a circulating fluidized bed boiler using wood pellets, a circulating fluidized bed combustion test device using no external heater was manufactured and used. According to the increase of co-combustion rate with wood pellet, combustion fraction and heat flux by combustor height were measured and pollutant emission characteristics were analyzed. In terms of combustibility, the effect on primary and secondary air ratio were also studied. In addition, as a result of analysis of the effect of corrosive nanoparticles on the combustion of coal with wood pellets, it was confirmed that coal is mostly composed of Ca and S, whereas wood pellets are mostly composed of K, Cl, and Na.

300-W-class Side-pumped Solar Laser

  • Qi, Hongfei;Lan, Lanling;Liu, Yan;Xiang, Pengfei;Tang, Yulong
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.627-633
    • /
    • 2022
  • To realize uniform side pumping of solar lasers and improve their output power, a solar concentrating system based on off-axis parabolic mirrors is proposed. Four identical off-axis parabolic mirrors with focal length of 1,000 mm are toroidally arranged as the primary concentrator. Four two-dimensional compound parabolic concentrators (2D-CPCs) are designed as a secondary concentrator to further compress the focused spot induced by the parabolic mirrors, and the focused light is then homogenized by four rectangular diffusers and provides uniform pumping for a laser-crystal rod to achieve solar laser emission. Simulation results show that the solar power received by the laser rod, uniformity of the light spot, and output power of the solar laser are 7,872.7 W, 98%, and 351.8 W respectively. This uniform pumping configuration and concentrator design thus provide a new means for developing high-power side-pumped solid-state solar lasers.

Importance of 3-dimensional imaging in the early diagnosis of chondroblastic osteosarcoma

  • Laura Althea Cuschieri;Rebecca Schembri-Higgans;Nicholas Bezzina;Alexandra Betts;Arthur Rodriguez Gonzalez Cortes
    • Imaging Science in Dentistry
    • /
    • v.53 no.3
    • /
    • pp.247-256
    • /
    • 2023
  • The aim of this report is to present a case of chondroblastic osteosarcoma located in the right maxillary premolar region of a 17-year-old female patient. The initial clinical presentation and 2-dimensional (2D) radiographic methods proved inadequate for a definitive diagnosis. However, a cone-beam computed tomography scan revealed a hyperdense, heterogeneous lesion in the right maxillary premolar region, exhibiting a characteristic "sun-ray" appearance. To assess soft tissue involvement, a medical computed tomography scan was subsequently conducted. A positron emission tomography scan detected no metastasis or indications of secondary tumors. T1- and T2-weighted magnetic resonance imaging showed signal heterogeneity within the lesion, including areas of low signal intensity at the periphery. Histological examination conducted after an incisional biopsy confirmed the diagnosis of highgrade chondroblastic osteosarcoma. The patient was then referred to an oncology department for chemotherapy before surgery. In conclusion, these findings suggest that early diagnosis using 3-dimensional imaging can detect chondroblastic osteosarcoma in its early stages, such as before metastasis occurs, thereby improving the patient's prognosis.

Development of a One-dimensional Numerical Model of the Electrically Heated Three-Way Catalyst For Start-up Heating in a 48-V Gasoline Hybrid Vehicle (48-볼트 가솔린 하이브리드 차량 초기 시동 시 배기 정화 성능 분석을 위한 1차원 전기 히터 촉매 해석 모델 개발)

  • Seongsu Kim ;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.150-155
    • /
    • 2023
  • Cold-start emissions are given great importance under the Euro-7 emission standard due to their significant impact on overall vehicle emissions. When an engine is started from a cold state, the combustion process is not yet optimized, leading to higher emissions. Hybrid vehicles, in particular, may face additional challenges, as their engine may remain inactive for extended periods, causing their catalysts to cool down and potentially become less effective in reducing emissions. In the present study, the performance of an electric heater was investigated as a means to enhance the catalyst heating during the start-up time. A simulation tool was utilized to develop a model for the gasoline exhaust aftertreatment system. The result indicates that the heater was able to increase the three-way catalyst temperature to 500℃ in 4 s using 20 kW power. In addition, the implementation of a secondary air supply resulted in reduced temperature overshoot and improved conversion efficiencies.

Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial

  • B.M. Chandrika;Holaly Chandrashekara Shastry Manjunatha;K.N. Sridhar;M.R. Ambika;L. Seenappa;S. Manjunatha;R. Munirathnam;A.J. Clement Lourduraj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1783-1790
    • /
    • 2023
  • Barium Bismuth Oxide Borate (BBOB) has been synthesized for the first time using solution combustion technique. SEM analysis reveal flower shape of the nanoparticles. The formation of the nanoparticles has been confirmed through XRD & FTIR studies which gives the physical and chemical structure of the novel material. The UV light absorption is observed in the range 200-300 nm. The present study highlights the radiation shielding ability of BBOB for different radiations like X/Gamma rays, Bremsstrauhlung and neutrons. The gamma shielding efficiency is comparable to that of lead in lower energy range and lesser than lead in the higher energy range. The bremsstrauhlung exposure constant is comparably larger for BBOB NPs than that of concrete and steel however it is lesser than that of lead. The beauty of BBOB nanoparticles lies in, high absorption of radiations and low emission of secondary radiations when compared to lead. In addition, the neutron shielding parameters like scattering length, absorption and scattering cross sections of BBOB are found to be much better than lead, steel and concrete. Thus, BBOB nanoparticles are highly efficient in absorbing X/Gamma rays, neutrons and bremsstrauhlung radiations.