• Title/Summary/Keyword: secondary device

Search Result 349, Processing Time 0.028 seconds

Memory Effect of $In_2O_3$ Quantum Dots and Graphene in $SiO_2$ thin Film

  • Lee, Dong Uk;Sim, Seong Min;So, Joon Sub;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.240.2-240.2
    • /
    • 2013
  • The device scale of flash memory was confronted with quantum mechanical limitation. The next generation memory device will be required a break-through for the device scaling problem. Especially, graphene is one of important materials to overcome scaling and operation problem for the memory device, because ofthe high carrier mobility, the mechanicalflexibility, the one atomic layer thick and versatile chemistry. We demonstrate the hybrid memory consisted with the metal-oxide quantum dots and the mono-layered graphene which was transferred to $SiO_2$ (5 nm)/Si substrate. The 5-nm thick secondary $SiO_2$ layer was deposited on the mono-layered graphene by using ultra-high vacuum sputtering system which base pressure is about $1{\times}10^{-10}$ Torr. The $In_2O_3$ quantum dots were distributed on the secondary $SiO_2$2 layer after chemical reaction between deposited In layer and polyamic acid layer through soft baking at $125^{\circ}C$ for 30 min and curing process at $400^{\circ}C$ for 1 hr by using the furnace in $N_2$ ambient. The memory devices with the $In_2O_3$ quantum dots on graphene monolayer between $SiO_2$ thin films have demonstrated and evaluated for the application of next generation nonvolatile memory device. We will discuss the electrical properties to understating memory effect related with quantum mechanical transport between the $In_2O_3$ quantum dots and the Fermi level of graphene layer.

  • PDF

Structureal and dielectric properties of $(Pb_{x},Sr_{x-1})TiO_{3}$ thin film for tunable device application (Tunable 소자 응용을 위한 $(Pb_{x},Sr_{x-1})TiO_{3}$ 박막의 구조 및 유전특성)

  • Kim, Kyoung-Tae;Kim, Chang-Il;Lee, Sung-Gap
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.78-81
    • /
    • 2002
  • Ferroelectric thin film is a very attractive material for the tunable microwave device applications such as electronically tunable mixers, delay lines, filters and phase shifters. Thin films of $Pb_{x}Sr_{1-x}TiO3(PST)$ were fabricated onto Pt/Ti/SiO2/Si substrate by the sol-gel method. We have investigated the structural and dielectric properties of PST(50/50) thin films for tunable microwave device applications. The PST thin films show typical polycrystalline structure with a dense microstructure without secondary phase formation. Dielectric properties of PST films are strongly dependent on annealing temperature. The dielectric constants, loss and tunability of the PST (50/50) thin films were 404, 0.023 and 51.73 %, respectively.

  • PDF

High-Voltage AlGaN/GaN High-Electron-Mobility Transistors Using Thermal Oxidation for NiOx Passivation

  • Kim, Minki;Seok, Ogyun;Han, Min-Koo;Ha, Min-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1157-1162
    • /
    • 2013
  • We proposed AlGaN/GaN high-electron-mobility transistors (HEMTs) using thermal oxidation for NiOx passivation. Auger electron spectroscopy, secondary ion mass spectroscopy, and pulsed I-V were used to study oxidation features. The oxidation process diffused Ni and O into the AlGaN barrier and formed NiOx on the surface. The breakdown voltage of the proposed device was 1520 V while that of the conventional device was 300 V. The gate leakage current of the proposed device was 3.5 ${\mu}A/mm$ and that of the conventional device was 1116.7 ${\mu}A/mm$. The conventional device exhibited similar current in the gate-and-drain-pulsed I-V and its drain-pulsed counterpart. The gate-and-drain-pulsed current of the proposed device was about 56 % of the drain-pulsed current. This indicated that the oxidation process may form deep states having a low emission current, which then suppresses the leakage current. Our results suggest that the proposed process is suitable for achieving high breakdown voltages in the GaN-based devices.

Development of hybrid system with fuel cell and lithium secondary battery (연료전지와 리튬 이차전지의 하이브리드 시스템 개발)

  • Hwang, Sangmoon;Jung, Eunmi;Son, Dongun;Shim, Taehee;Song, Hayoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.143.2-143.2
    • /
    • 2010
  • Therefore, with this development assignment we'd like to develop the hybrid system combining 800W DMFC (Direct Methanol Fuel Cell) and 1.6kW of Lithium secondary battery pack which can be applied to the most common small cart. a scooter, to secure the development capability of hundreds of Watts DMFC, the high-capacity Lithium secondary battery pack, the technology of BMS (Battery Management System) and the development technology of hybrid system. DMFC, in fact, has lower energy efficiency than PEMFC (Polymer Electrolyte Membrane Fuel Cell); however, it has several advantages in terms of fuel storage and use. It is pretty easy to be stored and used without any additional colling and heating devices because of its insensitive liquid methanol to temperature. In conclusion, DMFC system is the most suitable device for small mobile vehicles.

  • PDF

Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation (리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구)

  • Yoon, Hyun-Ki;Ha, Sang-Hyeon;Lee, Jaein
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

A Study on the Deterioration Diagnosis Device of Pole Transformer using FFT (FFT를 이용한 주상 변압기의 열화 진단 장치에 관한 연구)

  • 윤용한;김영춘;김재철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.97-106
    • /
    • 2000
  • This paper proposes on-line based a deterioration diagnosis device for diagnosis pole transformers using tan$\delta$ and FFT(fast Fourier transform). We measured tan$\delta$ and temperature to diagnose pole transformer insulating oil, diagnostic results are processed by FFT. For measuring convenience, we use R/F(radio frequency) wireless data communication module operating by secondary voltage of pole transformer. We have voltage variation test and oil temperature variation test to prove usability of proposed diagnosis device. The result of this paper shows that the proposed device can be used as deterioration diagnosis device of pole transformers.

  • PDF

Fabrication of an Automatic Color-Tuned System with Flexibility Using a Dry Deposited Photoanode

  • Choi, Dahyun;Park, Yoonchan;Lee, Minji;Kim, Kwangmin;Choi, Jung-Oh;Lee, Caroline Sunyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.643-650
    • /
    • 2018
  • A self-powered electrochromic device was fabricated on an indium tin oxide-polyethylene naphthalate flexible substrate using a dye-sensitized solar cell (DSSC) as a self-harvesting source; the electrochromic device was naturally bleached and operated under outdoor light conditions. The color of the organic electrochromic polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, was shifted from pale blue to deep blue with an antimony tin oxide film as a charge-balanced material. Electrochromic performance was enhanced by secondary doping using dimethyl sulfoxide. As a result, the device showed stable switching behavior with a high transmittance change difference of 40% at its specific wavelength of 630 nm for 6 hrs. To improve the efficiency of the solar cell, 1.0 wt.% of Ag NWs in the photoanode was applied to the $TiO_2$ photoanode. It resulted in an efficiency of 3.3%, leading to an operating voltage of 0.7 V under xenon lamp conditions. As a result, we built a standalone self-harvesting electrochromic system with the performance of transmittance switching of 29% at 630 nm, by connecting with two solar cells in a device. Thus, a self-harvesting and flexible device was fabricated to operate automatically under the irradiated/dark conditions.

MR Haptic Device for Integrated Control of Vehicle Comfort Systems (차량 편의장치 통합 조작을 위한 MR 햅틱 장치)

  • Han, Young-Min;Jang, Kuk-Cho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.291-298
    • /
    • 2017
  • In recent years, the increase of secondary controls within vehicles requires a mechanism to integrate various controls into a single device. This paper presents control performance of an integrated magnetorheological (MR) haptic device which can adjust various in-vehicle comfort instruments. As a first step, the MR fluid-based haptic device capable of both rotary and push motions within a single device is devised as an integrated multi-functional instrument control device. Under consideration of the torque and force model of the proposed device, a magnetic circuit is designed. The proposed MR haptic device is then manufactured and its field-dependent torque and force are experimentally evaluated. Furthermore, an inverse model compensator is synthesized under basis of the Bingham model of the MR fluid and torque/force model of the device. Subsequently, haptic force-feedback maps considering in-vehicle comfort functions are constructed and interacts with the compensator to achieve a desired force-feedback. Control performances such as reflection force are experimentally evaluated for two specific comfort functions.

Compensation Algorithm for the Secondary Voltage of a Coupling Capacitor Voltage Transformer by Considering the Hysteresis Characteristics of the Core (코어의 히스테리시스 특성을 고려한 CCVT 2차 전압 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kang, Hae-Gweon;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1457-1462
    • /
    • 2009
  • This paper proposes a compensating algorithm for the secondary voltage of a coupling capacitor voltage transformer (CCVT) in the time domain by considering the hysteresis characteristics of the core. The proposed algorithm estimates the three error terms i.e. the voltage across the secondary winding parameters, the voltage across the primary winding parameters, and the voltage across the capacitor and the tuning reactor. These three terms are added to the measured secondary voltage to obtain the correct voltage. The algorithm reduces the errors of the CCVT significantly both in the steady state and during a fault. The performance of the algorithm is verified under the various fault conditions by varying the fault distance, the fault inception angle, and the fault impedance with the EMTP generated data. Test results clearly indicate that the algorithm can increase the accuracy of a CCVT significantly under the fault conditions as well as in the steady state. The algorithm helps improve the performance of a protection relay or a metering device.

Development of Smart ICT-Type Electronic External Short Circuit Tester for Secondary Batteries for Electric Vehicles (전기자동차용 2차전지를 위한 스마트 ICT형 전자식 외부 단락시험기 개발)

  • Jung, Tae-Uk;Shin, Byung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.333-340
    • /
    • 2022
  • Recently, the use of large-capacity secondary batteries for electric vehicles is rapidly increasing, and accordingly, the demand for technologies and equipment for battery reliability evaluation is increasing significantly. The existing short circuit test equipment for evaluating the stability of the existing secondary battery consists of relays, MCs, and switches, so when a large current is energized during a short circuit, contact fusion failures occur frequently, resulting in high equipment maintenance and repair costs. There was a disadvantage that repeated testing was impossible. In this paper, we developed an electronic short circuit test device that realizes stable switching operation when a large-capacity power semiconductor switch is energized with a large current, and applied smart ICT technology to this electronic short circuit stability test system to achieve high speed and high precision through communication with the master. It is expected that the inspection history management system based on data measurement, database format and user interface will be utilized as essential inspection process equipment.