• Title/Summary/Keyword: secondary beam

Search Result 303, Processing Time 0.027 seconds

Measurement of ion induced secondary electron emission $coefficient({\gamma})$ and work function of vacuum annealed MgO protective layer in AC PDP

  • Lim, J.Y.;Jeong, H.S.;Park, W.B.;Oh, J.S.;Jeong, J.M.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.799-801
    • /
    • 2003
  • The secondary electron emission $coefficient({\bullet})$ of vacuum annealed MgO films has been investigated by ${\bullet}$ -focused ion beam(${\bullet}$ -FIB) system. The vacuum annealed MgO films have been found to have higher ${\bullet}$ values than those for as-deposited MgO films for Ne+ ion. Also it is found that the ${\bullet}$ for air-hold of vacuum annealed MgO layers for 24-hours is similar to that for vacuum annealed MgO films without any air-hold.

  • PDF

Influences of degradation in MgO protective layer and phosphors on ion-induced secondary electron emission coefficient and static margins in alternating current plasma display panels

  • Jeong, H.S.;Lim, J.E.;Park, W.B.;Jung, K.B.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.518-521
    • /
    • 2004
  • The degradation characteristics of MgO protective layer and phosphors have been investigated in terms of the ion-induced secondary electron emission coefficient ${\gamma}$ and static margin of discharge voltages, respectively, in this experiment. The ion-induced secondary electron emission coefficients ${\gamma}$ for the degraded MgO protective layer and phosphors have been studied by ${\gamma}$ -focused ion beam system. The energy of Ne+ ions used is from 80 eV to 200 eV in this experiment. The degraded MgO and phosphor layers are found to have higher ${\gamma}$ than that of normal ones without degradations or aged one. Also, the static margin of discharge voltages for test panels with degraded MgO protective layer and phosphors been found to be seriously decreased in comparison with those of normal ones without degradations.

  • PDF

Secondary Neutron Dose Measurement for Proton Line Scanning Therapy

  • Lee, Chaeyeong;Lee, Sangmin;Chung, Kwangzoo;Han, Youngyih;Chung, Yong Hyun;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.162-168
    • /
    • 2016
  • Proton therapy is increasingly being actively used in the treatment of cancer. In contrast to photons, protons have the potential advantage of delivering higher doses to the cancerous tissue and lower doses to the surrounding normal tissue. However, a range shifter is needed to degrade the beam energy in order to apply the pencil beam scanning technique to tumors located close to the minimum range. The secondary neutrons are produced in the beam path including within the patient's body as a result of nuclear interactions. Therefore, unintended side effects may possibly occur. The research related to the secondary neutrons generated during proton therapy has been presented in a variety of studies worldwide, since 2007. In this study, we measured the magnitude of the secondary neutron dose depending on the location of the detector and the use of a range shifter at the beam nozzle of the proton scanning mode, which was recently installed. In addition, the production of secondary neutrons was measured and estimated as a function of the distance between the isocenter and detector. The neutron dose was measured using WENDI-II (Wide Energy Neutron Detection Instruments) and a Plastic Water phantom; a Zebra dosimeter and 4-cm-thick range shifter were also employed as a phantom. In conclusion, we need to consider the secondary neutron dose at proton scanning facilities to employ the range shifter reasonably and effectively.

Characteristics of Secondary Electron Emission for Electron Beam Extraction (전자빔 인출을 위한 2차전자방출 특성 연구)

  • Woo, Sung-Hun;Lee, Hong-Sik;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.204-206
    • /
    • 2003
  • Electron beam generator of cold cathode type has been developed for industrial application, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. The characteristics of secondary electron emission are studied by comparing total cathode current with ion current.

  • PDF

The characteristics of AC-PDPs According to binary and ternary gas mixtures of He-Ne-Xe_

  • Lee, H.J.;Son, C.G.;Lee, S.B.;Han, Y.K.;Jeoung, S.H.;You, N.L.;Lim, J.E.;Lee, J.H.;Moon, M.W.;Oh, P.Y.;Jeoung, J.M.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1195-1198
    • /
    • 2005
  • The improvement of efficiency is the one of the most important part in AC PDPs . To achieve high efficiency, high VUV emission efficiency and High ion induces secondary electron emission coefficient are needed. We have measured the emission spectra of vacuum ultraviolet rays and ion induced secondary electron emission coefficient of MgO protective layer in surface discharge AC-PDP with binary and ternary gas mixtures. We have investigated electro-optical characteristics of AC-PDPs to optimum gas mixture for high efficient.

  • PDF

Influence of surface geometrical structures on the secondary electron emission coefficient $({\gamma})$ of MgO protective layer

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jeong, J.C.;Kim, S.B.;Cho, I.R.;Cho, J.W.;Kang, S.O.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.806-809
    • /
    • 2003
  • Ion-induced secondary electron emission coefficient $({\gamma})$. of the patterned MgO thin film with geometrical structures has been measured by ${\gamma}$ - FIB(focused ion beam) system. The patterned MgO thin film with geometrical structures has been formed by the mask (mesh of ${\sim}$ $10{\mu}m^{2})$ under electron beam evaporation method. It is found that the higher ${\gamma}$. has been achieved by the patterned MgO thin film than the normal ones without patterning.

  • PDF

Disinfection of Total Coliforms in Sewage Treatment Effluent using Electron Beam (전자선을 이용한 하수처리장 방류수내 대장균군 살균)

  • Kim, Yuri;Han, Bumsoo;Kim, Jinkyu;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.376-381
    • /
    • 2004
  • The use of electron beam irradiation was investigated to disinfect total coliforms in the secondary sewage treatment effluent. Unchlorinated secondary effluent was irradiated at different dose of 0.2~1.0 kGy by 1 MeV, ELV-4 Model electron beam accelerator. It is interesting to note that a 100 % reduction in total coliforms and total colonies were achieved until a dose of approximately 0.8 kGy. Even at low dose of 0.2 kGy, the total coliforms and total colonies were successfully inactivated to the level of satisfying the new effluent discharge guideline. Besides disinfection of total coliforms, approximately a 50% removal in biochemical oxygen demand was pronounced at a dose of 0.2 kGy. More than 20 % removal in suspended solids and turbidity was also observed at a dose of 1.0 kGy. The application of electron beam irradiation appeared to be one of options to reuse sewage treatment effluent as agricultural or industrial water.

The Parametric Influence on Focused Ion Beam Processing of Silicon (집속이온빔의 공정조건이 실리콘 가공에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Jong-Hyeong;Jang, Dong-Young;Kim, Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.70-77
    • /
    • 2007
  • The application of focused ion beam(FIB) technology has been broadened in the fabrication of nanoscale regime. The extended application of FIB is dependent on complicated reciprocal relation of operating parameters. It is necessary for successful and efficient modifications on the surface of silicon substrate. The primary effect by Gaussian beam intensity is significantly shown from various aperture size, accelerating voltage, and beam current. Also, the secondary effect of other process factors - dwell time, pixel interval, scan mode, and pattern size has affected to etching results. For the process analysis, influence of the secondary factors on FIB micromilling process is examined with respect to sputtering depth during the milling process in silicon material. The results are analyzed by the ratio of signal to noise obtained using design of experiment in each parameter.

Influence of sintering temperature of MgO pellet on the electro-optical characteristics of alternating current plasma display panel (AC-PDP)

  • Hong, Sung-Hee;Son, Chang-Gil;Jung, Seok;Kim, Jung-Seok;Paik, Jong-Hoo;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.400-403
    • /
    • 2008
  • We have investigated the electro-optical characteristics of AC-PDP with different MgO protective layers, which have been deposited by electron beam evaporation from various sintered pellets with different temperatures. We have measured the secondary electron emission coefficient ($\gamma$) by using the Gamma Focused Ion Beam ($\gamma$-FIB) system, the static margin, and the address delay time. Also, we have investigated photoluminescence (PL) characteristics for understanding the energy levels of MgO pellets and protective layers.

  • PDF

Generation of Water Droplet Ion Beam for ToF-SIMS Analysis

  • Myoung Choul Choi;Ji Young Baek;Aram Hong;Jae Yeong Eo;Chang Min Choi
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2023
  • The increasing demand for two-dimensional imaging analysis using optical or electronic microscopic techniques has led to an increase in the use of simple one-dimensional and two-dimensional mass spectrometry imaging. Among these imaging methods, secondary-ion mass spectrometry (SIMS) has the best spatial resolution using a primary ion beam with a relatively insignificant beam diameter. Until recently, SIMS, which uses high-energy primary ion beams, has not been used to analyze molecules. However, owing to the development of cluster ion beams, it has been actively used to analyze various organic molecules from the surface. Researchers and commercial SIMS companies are developing cluster ion beams to analyze biological samples, including amino acids, peptides, and proteins. In this study, a water droplet ion beam for surface analysis was realized. Water droplets ions were generated via electrospraying in a vacuum without desolvation. The generated ions were accelerated at an energy of 10 keV and collided with the target sample, and secondary ion mass spectra were obtained for the generated ions using ToF-SIMS. Thus, the proposed water droplet ion-beam device showed potential applicability as a primary ion beam in SIMS.