• Title/Summary/Keyword: secondary battery

Search Result 635, Processing Time 0.032 seconds

Analysis of Characteristics and Internal Resistance of Seawater Secondary Battery according to its Usage Environment (해수이차전지의 사용 환경에 따른 특성 및 내부 저항 분석)

  • Seung-pyo Kang;Jang-mok Kim;Hyun-jun Cho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.223-229
    • /
    • 2023
  • Seawater batteries are next-generation secondary batteries that use seawater as a cathode. They utilize marine resources to provide competitive prices, high eco-friendliness, and a structure suitable for marine applications. Based on these advantages, pouch types and prismatic types have been studied and developed assuming natural seawater exposure. However, because of the electrical characteristics of the secondary battery, its capacity and internal resistance vary depending on the use environment. These characteristics are not only utilized for predicting the life of a battery but also have a direct effect on the capacity and power suitable for a specific situation. Therefore, the internal resistance was analyzed in this study by measuring the capacity depending on the seawater battery use environment and the state-of-charge-open-circuit-voltage measurement method.

The Corrosion behaviour of Pb-Ca alloy for Lead-acid battery by cyclic Voltammetry (Cyclic Voltammetry에 의한 연측전지용 Pb-Ca 합금의 부식특성 연구)

  • Kim, S.P.;Kim, G.T.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1048-1050
    • /
    • 1995
  • Lead-acid battery is used widely as a power source at a automobile, industrial machines, folk lifts, U.P.S. etc. Lead-acid battery is cheaper than arty other secondary battery, but this battery has many disadvantages such as heavy, low energy density, environment problem etc. In this article, we introduce cyclic voltammetry methods to investigate corrosion behaviour of positive grids of Pb-Ca alleys.

  • PDF

Evaluation and monitoring of degradation mechanism of Li-ion battery for portable electronic device (휴대전자기기용 저용량 리튬이온 배터리의 충방전 열화 기구 분석 및 모니터링)

  • Byeon, Jai Won
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.129-140
    • /
    • 2013
  • As a fundamental experimental study for reliability improvement of lithium ion secondary battery, degradation mechanism was investigated by microscopic observation and acoustic emission monitoring. Microstructural observation of the decomposed battery after cycle test revealed mechanical and chemical damages such as interface delamination, microcrack of the electrodes, and solid electrolyte interphase (SEI). Acoustic emission (AE) signal was detected during charge and discharge of lithium ion battery to investigate relationships among cumulative count, discharge capacity, and microdamages. With increasing number of cycle, discharge capacity was decreased and AE cumulative count was observed to increase. Observed damages were attributed to sources of the detected AE signals.

Analysis of Secondary Battery Based on Image Processing of Computed Tomography (CT 기반 영상처리를 이용한 이차전지의 분석)

  • Jea-Seok Oh;Sang-Yeol Lee;Yoon-Gi Yang;Keun-Ho Rew
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.6
    • /
    • pp.13-21
    • /
    • 2022
  • In this study, we presented a method to inspect the mechanical defects of 4680 type lithium-ion batteries through image processing method. The raw X-ray images are filtered with CLAHE, then Radon inverse transformations are calculated to reconstruct 3D computed tomography of the battery. Using Haar-cascade, the ROI is targeted automatically, and the template matchings are applied twice. The variations of contrast between template and background show the appropriate values for detecting tabs. It was shown that the proposed algorithm can detect all the tab inside the battery and the distances between tabs. Finally, we successfully found the geometrical defects of battery.

Separators far Li-Ion Secondary Batteries (리튬이온 2차전지용 분리막)

  • Nam Sang Yong;Lee Young Moo;Lee Chang Hyun;Park Ho Bum;Rhim Ji Won;Ha Seong Yong;Kang Jong Seok
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.263-274
    • /
    • 2004
  • The polymeric membrane, a component of battery devices such as Li-ion battery (LIB) and Li-polymer battery (LPB), is a typical material in which the carrier mobility dominates the battery performance. In this paper, the state-of-the-art of membranes for secondary battery is described in terms of membrane properties. Several prerequisites, which are related to stability of battery devices, are discussed to design and prepare suitable polymeric membranes. In addition, physical requirements of membranes and their measurement methods are described to develop applicable polymeric membranes in membrane preparation processes.

Recent Developments in Anode Materials for Li Secondary Batteries (리튬이차전지용 음극 소재 기술 개발 동향)

  • Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.211-222
    • /
    • 2008
  • Li secondary batteries, which have been in successful commercialization, are becoming important technology as power sources in non-IT application like HEV(Hybrid Electric Vehicle) as well as in portable electronics. It is not the overstatement that the commercialization of Li secondary battery was a result of the development of carbonaceous anode material and safety mechanisms. The R&D of electrode materials of Li secondary batteries is one of the core technologies in the development and it has enormous influences on various fields as well as on the battery industry. Here, the current research of anode materials is described and the underlying problems associated with development, advantages and drawbacks is analyzed.

The Study on Thermal Modeling and Charge Capacity Estimation for Lithium Secondary Battery (리튬 2차 전지의 열적 모델링 및 용량 예측에 관한 연구)

  • Kim, Jong-Won;Cho, Hyun-Chan;Kim, Kwang-Sun;Jo, Jang-Gun;Lee, Jung-Su;Hu, Bin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.53-57
    • /
    • 2007
  • In this paper, the intelligent estimation algorithm is developed for residual quantity estimate of lithium secondary cell and we suggest the control algorithm to get battery SOC through thermal modeling of electric cell. Lithium secondary cell gives cycle life, charge characteristic, discharge characteristic, temperature characteristic, self-discharge characteristic and the capacity recovery rate etc. Therefore, we make an accurate estimate of the capacity of battery according to thermal modeling to know the capacity of electric cell that is decreased by various special quality of lithium secondary cell. And we show effectiveness through comparison of value as result that use simulation and fuzzy logic.

  • PDF

Radical Polymers and Organic Radical Battery

  • Nishide, Hiroyuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.62-62
    • /
    • 2006
  • Based on the redox couples of a nitroxide radical, organic radical polymers were utilized as the electrode-active or charge-storage component for a secondary battery. We call a battery composed of the radical polymer electrode as "organic radical battery". Organic radical battery has several advantages: high capacity, high power-rate performance, long cycle ability, and environmentally-benign features. Synthesis and electrochemical studies of nitroxide polymers are described. Battery fabrication and cell performance are also reported.

  • PDF

A Study on the Synthesis of polyaniline and Characteristics of Polyaniline Battery (Polyaniline의 합성 및 Polyaniline전지의 특성연구)

  • Moon, S.I.;Kim, I.S.;Ahn, M.S.;Kang, D.P.;Hyung, Y.E.;Park, H.Y.;Son, M.W.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.284-286
    • /
    • 1989
  • This paper describes the synthesis method of polyaniline and the characteristics of polyaniline/Zn and polyaniline/Li secondary batteries. Polyaniline was synthesized chemical or electrochemical method and then used as cathod active materials to investigate the characteristics of polyaniline/Zn and polyaniline/Li secondary batteries. Characteristics of polyaniline/Zn battery was affected by additives such as graphite powder and carbon black. Internal resistance, energy density and energy efficiency of polyaniline/Li secondary battery were $167{\Omega}$, 140.7 Wh/kg and 95.6%, respectively.

  • PDF

Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery

  • Kim, Taek-Rae;Wu, Jing-Yu;Hu, Quan-Li;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.335-339
    • /
    • 2007
  • Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at $1000^{\circ}C$ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.