• Title/Summary/Keyword: second-order system

Search Result 3,286, Processing Time 0.034 seconds

Electric Discharge Analysis Using Nonlinarly-Coupled Equation of Electromagnetic Field and Charge Transport (방전현상 해석을 위한 전자장 및 전하이동 방정식의 비선형 결합 알고리즘)

  • Lee, Se-Yeon;Park, Il-Han;Lee, Se-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1494-1495
    • /
    • 2006
  • A complete finite element analysis method for discharge onset process, which is governed and coupled by charge transport equation and electric field equation, was presented. The charge transport equation of first order was transformed into a second-order one by utilizing the artificial diffusion scheme. The two second-order equations were analyzed by the finite element formulation which is well-developed for second-order ones. The Fowler-Nordheim injection boundary condition was adopted for charge transport equation. After verifying the numerical results by comparing to the analytic solutions using parallel plane electrodes with one carrier system, we extended the result to blade-plane electrodes in 2D xy geometry with three carriers system. Radius of the sharp tip was taken to be 50 ${\mu}m$. When this sharp geometry was solved by utilizing the space discretizing methods, the very sharp tip was found to cause a singularity in electric field and space charge distribution around the tip. To avoid these numerical difficulties in the FEM, finer meshes, a higher order shape function, and artificial diffusion scheme were employed.

  • PDF

Autonomic Nervous System Changes Associated with Respiratory Cycle and Posture (호흡 주기와 자세에 따른 자율신경계의 변화)

  • Song, Seongin;Goo, Bongoh
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.2
    • /
    • pp.17-23
    • /
    • 2018
  • Purpose : The purpose of this study was to investigate whether the respiratory cycle and posture can modulate the autonomic nervous system. Methods : Thirty-two healthy men and women, aged 20-30 years, were enrolled in this study. We conducted 2-second and 6-second respiratory cycle with the subjects in standing, sitting, and supine positions, respectively. Their heart rate variability was measured in each position for both cycle lengths. Results : The low frequency/high frequency (LF/HF) ratio is derived from heart rate variability. In the 2-second respiratory cycles, the LF/HF ratios were highest in standing, sitting, and supine position in descending order. There was a significant difference in heart rate between standing and sitting positions (P<.005). In addition, there was a significant difference in heart rate between standing and supine position (P<.000). In the 6-second respiratory cycles, the LF/HF ratios were again highest in a standing, sitting, and supine position in descending order. However, posture was not found to make a significant difference in this case. Conclusion : Respiratory cycle and posture effectively modulated the autonomic nervous system. Further studies of the clinical application of these results should be conducted.

Enhanced Second-order Implicit Constraint Enforcement for Dynamic Simulations

  • Hong, Min;Welch, Samuel W.J.;Jung, Sun-Hwa;Choi, Min-Hyung;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.51-62
    • /
    • 2008
  • This paper proposes a second-order implicit constraint enforcement method which yields enhanced controllability compared to a first-order implicit constraints enforcement method. Although the proposed method requires solving a linear system twice, it yields superior accuracy from the constraints error perspective and guarantees the precise and natural movement of objects, in contrast to the first-order method. Thus, the proposed method is the most suitable for exact prediction simulations. This paper describes the numerical formulation of second-order implicit constraints enforcement. To prove its superiority, the proposed method is compared with the firstorder method using a simple two-link simulation. In this paper, there is a reasonable discussion about the comparison of constraints error and the analysis of dynamic behavior using kinetic energy and potential energy.

Design of the Optimal Phase for the Interpolant Filter in the Second-order Bandpass Sampling System (2차 BPS 시스템의 interpolant 필터에 대한 최적 위상 설계)

  • Baek, Jein
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.132-139
    • /
    • 2016
  • In the bandpass sampling(BPS), the sampling frequency for the analog-to-digital converter is lower than that of the signal to be sampled. Since the BPS operation results in the signal spectrum to be copied on the baseband, it is possible for the frequency down-converter to be conveniently omitted. The second-order BPS system is introduced in order to cancel the aliased interference components from the BPS output that may be generated by the BPS processing. In this paper, we introduce a design method for the optimal phase of the interpolant filter in the second-order BPS system which enables to maximally cancel the aliased components. Being mathematically derived, this method can always be applied independently to the spectral characteristics of the BPS input signal. The performance improvements by the suggested method has been measured statistically with various power spectra of the received signal, and it has been shown that the maximal amount of the improvements reaches up to 5~20 [dB] in comparison with the previous suboptimal algorithm.

Theoretical Investigation of First-order and Second-order Polarization-mode Dispersion Tolerance on Various Modulation Formats in 40 Gb/s Transmission Systems with FEC Coding

  • Jang, Ho-Deok;Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.227-233
    • /
    • 2009
  • We investigated the polarization-mode dispersion (PMD) tolerance for 40Gb/s non-return to zero (NRZ), duobinary NRZ, return to zero (RZ), carrier-suppressed RZ (CS-RZ), and duobinary-carrier-suppressed RZ (DCS-RZ) modulation formats with a forward error correction (FEC) coding. The power penalty has been calculated as a measure of the system performance due to PMD. After comparison of the PMD tolerance of various modulation formats, our results suggest that RZ signals have the best tolerance against the effect of first-order PMD only. The duobinary NRZ modulation format is most resilient to PMD when both first- and second-order PMD are considered. However, the duobinary NRZ modulation format is the most sensitive to the incident angle of the input signal to a fiber axis in the presence of first- and second-order PMD, leading to incident angle-dependent power penalty. The coding gain by FEC can cope with the power penalties induced by first- and second-order PMD up to a DGD value of 16ps.

Design of the Zero Location for Minimizing the Peak Overshoot of Second Order Discrete Systems (이차 이산시스템의 Peak Overshoot을 최소화하기 위한 영점의 위치 설계)

  • Lee, Jas-Seok;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.512-514
    • /
    • 1999
  • The damping ratio $\zeta$ of a continuous 2nd order response which passes all the points of the discrete response of a 2nd order discrete system(envelope curve) is a function of only the location of the closed-loop pole and ie not at all related to the location of the zero. And the peak overshoot of the envelope curve is uniquely specified by the damping ratio $\zeta$, which is a function of solely the closed-loop pole location, and the angle $\alpha$ which is determined by the relative location of the zero with respect to the closed-loop complex pole. Therefore, if the zero slides on the real axis with the closed-loop complex poles being fixed, then the angle $\alpha$ changes however the damping ratio $\zeta$ does not. Accordingly, when the closed-loop system poles are fixed, the peak overshoot is function of $\alpha$ or the system zero. In this thesis the effects of the relative location of the zero on the system performance of a second order discrete system is studied.

  • PDF

Ductile fracture simulation using phase field approach under higher order regime

  • Nitin Khandelwal;Ramachandra A. Murthy
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.199-211
    • /
    • 2024
  • The loading capacity of engineering structures/components reduces after the initiation and propagation of crack eventually leads to the final failure. Hence, it becomes essential to deal with the crack and its effects at the design and simulation stages itself, by detecting the prone area of the fracture. The phase-field (PF) method has been accepted widely in simulating fracture problems in complex geometries. However, most of the PF methods are formulated with second order continuity theoryinvolving C0 continuity. In the present study, PF method based on fourth-order (i.e., higher order) theory, maintaining C1 continuity has been proposed for ductile fracture simulation. The formulation includes fourth-order derivative terms of phase field variable, varying between 0 and 1. Applications of fourth-order PF theory to ductile fracture simulation resulted in novelty in this area. The proposed formulation is numerically solved using a two-dimensional finite element (FE) framework in 3-layered manner system. The solutions thus obtained from the proposed fourth order theory for different benchmark problems portray the improvement in the accuracy of the numerical results and are well matched with experimental results available in the literature. These results are also compared with second-order PF theory and a comparison study demonstrated the robustness of the proposed model in capturing ductile behaviour close to experimental observations.

Sliding mode control of a nonlinear electromagnetic levitation system

  • Fujimoto, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.4-48
    • /
    • 2001
  • Major objective of this paper is to develop the sliding mode control method for a nonlinear electro magnetic levitation system governed by a set of a second-order motion equation and a first-order electromagnetic equation. Simulations for initial responses were carried out to confirm the validity of the present design method.

  • PDF

Importance Sampling Technique for System Reliability Analysis of Bridge Structures (교량구조의 체계 신뢰성 해석을 위한 중요도 표본추출 기법)

  • 조효남;김인섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.34-42
    • /
    • 1991
  • This study is directed for the development of an efficient system-level Importance Sampling Technique for system reliability analysis of bridge structures Many methods have been proposed for structural reliability assessment purposes, such as the First-order Second-Moment Method, the Advanced Second-Moment Method, Computer Simulation, etc. The Importance Sampling Technique can be employed to obtain accurate estimates of the required probability with reasonable computation effort. Based on the observation and the results of application, it nay be concluded that Importance Sampling Method is a very effective tool for the system reliability analysis.

  • PDF

Second-order statistics of natural frequencies of smart laminated composite plates with random material properties

  • Singh, B.N.;Umrao, Atul;Shukla, K.K.;Vyas, N.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.19-34
    • /
    • 2008
  • Nowadays developments in the field of laminated composite structures with piezoelectric have attracted significant attention of researchers due to their wide range of applications in engineering such as sensors, actuators, vibration suppression, shape control, noise attenuation and precision positioning. Due to large number of parameters associated with its manufacturing and fabrication, composite structures with piezoelectric display a considerable amount of uncertainty in their material properties. The present work investigates the effect of the uncertainty on the free vibration response of piezoelectric laminated composite plate. The lamina material properties have been modeled as independent random variables for accurate prediction of the system behavior. System equations have been derived using higher order shear deformation theory. A finite element method in conjunction with Monte Carlo simulation is employed to obtain the secondorder statistics of the natural frequencies. Typical results are presented for all edges simply supported piezoelectric laminated composite plates to show the influence of scattering in material properties on the second order statistics of the natural frequencies. The results have been compared with those available in literature.