• Title/Summary/Keyword: second control flow rate

Search Result 87, Processing Time 0.024 seconds

Solubility Consideration in Performance Analysis of a $CO_2$ Twin Rotary Compressor (오일 용해도를 고려한 $CO_2$ 트윈 로타리 압축기 성능해석)

  • Kim, Woo-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.842-849
    • /
    • 2007
  • For a $CO_2$ two-stage twin rotary compressor used for heat pump water heater system, changes of $CO_2$ solubility in PAG oil were investigated along the gas passages from the first stage suction to final discharge. Only slight changes in solubility took place in suction chambers for both of the first and second stages, but for compression chambers, solubility variation ranged from 0.115 to 0.136, and from 0.133 to 0.182, respectively for the first and second stages. Calculation of gas flashing in parts of leakage oil flows and of oil contained in control volumes due to solubility changes was conducted and included in gas pressure calculation. For the second stage, gas flashing amounts to around $5%\sim6%$ for most leakage flows. Cooling capacity, compressor input, and COP obtained by calculation were well compared to the experimental results. Effects of operation speed on the compressor performance was also studied: as the shaft speed increased, adiabatic efficiency decreased rapidly due to increased over-compression loss.

Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System (지역난방 적용 태양열시스템의 장기 열성능 분석)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.

Design and Performance Test of Cooling-Air Test Equipment for the Environmental Control System in Aircraft (항공기 ECS 냉각공기 시험장비 설계 및 성능 시험)

  • So, Jae-uk;Kim, Jin-sung;Kim, Jae-woo;Kim, Jin-bok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.147-154
    • /
    • 2021
  • In this paper, the configuration and design of the test equipment are presented to examine the impact of rapid temperature change in cooling-air that may occur during the operation of the fixed wing aircraft Environmental Control System (ECS) on avionic electronic equipment. At the start of the ECS, the temperature of the air supplied by the aircraft ECS may be increased to 5.0℃ per second. In order to ensure operating of the avionic electronic equipment that is mounted on the aircraft and receives cooling-air from the ECS, testing equipment that can implement the cooling-air characteristic test environment is required. During design of test equipment was verified cooling-air rapid rate of temperature change by performing a thermal/flow analysis, performance of the test equipment implemented was verified by applying an avionic electronic equipment.

Photocatalytic Property of Nano-Structured TiO$_2$ Thermal Splayed Coating - Part I: TiO$_2$ Coating - (나노구조 TiO$_2$ 용사코팅의 미세조직 제어 공정기술 개발과 광촉매 특성평가 - Part I: TiO$_2$코팅 -)

  • 이창훈;최한신;이창희;김형준;신동우
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.39-45
    • /
    • 2003
  • Nano-TiO$_2$ photocatalytic coatings were deposited on the stainless steel 304(50$\times$70$\times$3mm) by the APS(Atmospheric Plasma Spraying). Photocatlytic reaction was tested in MB(methylene blue) aqueous solution. For applying nano-TiO$_2$ powders by thermal spray, the starting nano-TiO$_2$ powder with 100% anatase crystalline was agglomerated by spray drying. Plasma second gas(H$_2$) flow rate and spraying distance were used as principal process parameters which are known to control heat enthalpy(heat input). The relationship between process parameters and the characteristics of microstructure such as the anatase phase fraction and grain size of the TiO$_2$ coatings were investigated. The photo-decomposition efficiency of TiO$_2$ coatings was evaluated by the kinetics of MB aqueous solution decomposition. It was found that the TiO$_2$ coating with a lower heat input condition had a higher anatase fraction, smaller anatase grain size and a better photo-decomposition efficiency.

OPTIMAL PORTFOLIO STRATEGIES WITH A LIABILITY AND RANDOM RISK: THE CASE OF DIFFERENT LENDING AND BORROWING RATES

  • Yang, Zhao-Jun;Huang, Li-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.109-126
    • /
    • 2004
  • This paper deals with two problems of optimal portfolio strategies in continuous time. The first one studies the optimal behavior of a firm who is forced to withdraw funds continuously at a fixed rate per unit time. The second one considers a firm that is faced with an uncontrollable stochastic cash flow, or random risk process. We assume the firm's income can be obtained only from the investment in two assets: a risky asset (e.g., stock) and a riskless asset (e.g., bond). Therefore, the firm's wealth follows a stochastic process. When the wealth is lower than certain legal level, the firm goes bankrupt. Thus how to invest is the fundamental problem of the firm in order to avoid bankruptcy. Under the case of different lending and borrowing rates, we obtain the optimal portfolio strategies for some reasonable objective functions that are the piecewise linear functions of the firm's current wealth and present some interesting proofs for the conclusions. The optimal policies are easy to be operated for any relevant investor.

Control of Odor Emissions Using Biofiltration: A Case Study of Dimethyl Disulfide

  • Kim, Jo-Chun;Bora C. Arpacioglu;Eric R. Allen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E3
    • /
    • pp.153-163
    • /
    • 2002
  • A laboratory- scale dual-column biofilter system was used to study the biofiltration of dimethyl disulfide (DMDS). The gas flow rate and DMDS concentration to the biofilter were varied to study their effect on the remov-al of dimethyl disulfide. Operating parameters such as pH, temperature, and water content were monitored during the biofilter operation and necessary precautions were taken to keep these parameters within the acceptable limits. It was observed that the removal efficiency of DMDS was optimal at neutral pH values. After five month op-eration, the neutralization of the filter beds with sodium carbonate became necessary for the optimum operation of the biofilters. The microbial population already present in the compost mixtures was found to be adequate in treat-ing DMDS. The compost mixtures were found to be similar in terms of biofiltration efficiency of DMDS. However, pressure drops observed in the first column compost mixture (compost/ peat mulch) was extremely high, making this compost economically not feasible. The second mixture (compost/bark) provided pressure drops within accept-able limits. A minimum residence time of 30 seconds at the optimal operating conditions appeared to be adequate for achieving high removal efficiencies (>90%).

Selective Si Epitaxial Growth by Control of Hydrogen Atmosphere During Heating-up (승온중 수소 분위기 제어에 의한 선택적 Si 에피텍시 성장)

  • Son, Yong-Hun;Park, Seong-Gye;Kim, Sang-Hun;Nam, Seung-Ui;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.363-368
    • /
    • 2002
  • we proposed the use of $Si_2H_ 6/H_2$ chemistry for selective silicon epitaxy growth by low-pressure chemical vapor deposition(LPCVD) in the temperature range $600~710^{\circ}C$ under an ultraclean environment. As a result of ultraclean processing, an incubation period of Si deposition only on $SiO_2$ was found, and low temperature epitaxy selective deposition on Si was achieved without addition of HCI. Total gas flow rate and deposition pressure were 16.6sccm and 3.5mtorr, respectively. In this condition, we selectively obtained high-quality epitaxial Si layers of the 350~1050$\AA$ thickness. In older to extend the selectivity, we kept high pressure $H_2$ environment without $Si_2H_6$ gas for few minutes after first incubation period and then we conformed the existence of second incubation period.

The quality control and acceptability of spirometry in preschool children (학동 전기 소아에서 폐활량 측정의 질관리와 성공률)

  • Seo, Hyun Kyong;Chang, Sun Jung;Jung, Da Woon;Lee, Cho Ae;Wee, Young Sun;Jee, Hye Mi;Seo, Ji Young;Han, Man Yong
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.11
    • /
    • pp.1267-1272
    • /
    • 2009
  • Purpose:We examined the ability of preschool aged children to meet the American Thoracic Society (ATS) and European Resiratory Society (ERS) goals for spirometry quality and tried to find out the major factor for improving the rate of success of spiromety test in this age group. Methods:Spirometry was performed in 2-6 aged 155 children with chronic cough or suspicious asthma with the recording of maneuver quality measures of forced expiratory time, end-of-test volume, back-extrapolated volume (Vbe), and forced vital capacity (FVC), as well as flow-volume curve. The subjects were tested several times and the two best results in each subject were selected. All criteria for quality control were suggested by ATS/ERS guidelines. The criteria for starting of the test was Vbe <80 mL and Vbe/FVC <12.5%. The criteria for repeatability of the test was that second highest FVC and FEV1 are within 100 ml or 10% of the highest value, whichever is greater. For the criteria for termination of the test for preschool aged children, we evaluated the flow-volume curve Results:As getting older, the success rate of spirometry increased and rapidly increased after 3 years old. Total success rate of the test was 59.4% (2 years old - 14.3%, 3 years old - 53.7%, 4 years old - 65.1%, 5 years old - 69.7%, 6 years old- 70.8%). The percentage of failure to meet the criteria for starting the test was 6.5%, repeatability of the test was 12.3% and end of the test was 31%. There was a significant difference only in age between success group and failure group. Evaluating the quality control criteria of previous studies, the success rate increased with age. Conclusion:About 60% of preschool aged children met ATS/ERS goals for spirometry test performance and the success rate was highly correlated with age. It is clearly needed that developing more feasible and suitable criteria for quality control of spirometry test in preschool aged children.

Critical-speed Increase of Optical Disk by Applying Residual Stresses (잔류응력 부과에 의한 광디스크의 임계속도 증가)

  • Kim, Nam Woong;Na, Sang Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2092-2099
    • /
    • 2013
  • Through the data transfer race in industry since 1990s, the operational speed of optical disk drive(ODD) becomes commonly over 10,000 rpm. Such high speed operation inevitably causes the vibration, which is also the disturbances in the read-write process of pick-up servo-controller. Generally the vibration disturbance problem can be solved by the vibration isolation using the rubber mount and the increase of robustness of the pick-up servo-controller. Optical disk itself has not been targeted for the vibration reduction, because it is manufactured under the standardized format. In this paper we focused on the increase of critical speed of optical disk, that is, the improvement of dynamic characteristics, with the control of residual stresses which are come from the injection molding process. To do this, first, the residual stresses induced from the injection molding process are calculated using finite element method. The major design parameters of the process conditions are flow rate and melt temperature, which control the residual stresses in optical disk. Second, the critical speed of optical disk is calculated with modal analysis considering residual stress distributions. It was found out that the critical speed can be improved by the control of operational parameters in the injection molding process.

A Numerical Study on Various Energy and Environmental System (II) (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구(II))

  • Jang D. S.;Park B. S.;Kim B. S.;Lee E. J.;Song W. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.58-67
    • /
    • 1996
  • This paper describes some computational results of various energy and environmental systems using Patankar's SIMPLE method. The specific topics handled in this study are jet bubbling reactor for flue gas desulfurization, cyclone-type afterburner for incineration, 200m tall stack for 500 MW electric power generation, double skin and heat storage systems of building energy saving for the utilization of solar heating, finally turbulent combustion systems with liquid droplet or pulverized coal particle. A control-volume based finite-difference method with the power-law scheme is employed for discretization. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, that is, SIMPLEC. Reynolds stresses are closed using the standard $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. Two-phase turbulent combustion of liquid drop or pulverized coal particle is modeled using locally-homogeneous, gas-phase, eddy breakup model. However simple approximate models are incorporated for the modeling of the second phase slip and retardation of ignition without consideration of any detailed particle behavior. Some important results are presented and discussed in a brief note. Especially, in order to make uniform exit flow for the jet bubbling reactor, a well-designed structure of distributor is needed. Further, the aspect ratio in the double skin system appears to be one of important factors to give rise to the visible change of the induced air flow rate. The computational tool employed in this study, in general, appears as a viable method for the design of various engineering system of interest.

  • PDF