• Title/Summary/Keyword: seawater concentration

Search Result 544, Processing Time 0.023 seconds

Algicidal Activity of Substance Purified from Marine Bacteria Metabolites against Cochlodinium polykrikoides

  • Byun Hee-Guk;Jeong Seong-Youn;Park Young-Tae;Lee Won-Jae;Kim Se-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.150-155
    • /
    • 2002
  • Marine bacteria producing algicidal substance against Cochlodinium polykrikoides was screened and isolated from seawater. Metabolite of marine bacteria Micrococcus sp. LG-5 showed strong algicidal activity against C. polykrikoides. C. polykrikoides was inhibited above $90\%$ at $5\%$ solution of the metabolite within 24 hrs. Algicidal substance from the metabolite was extracted with ethyl acetate, and then purified by PTLC and reversed-phase HPLC. Algicidal activity of purified compound against C. polykrikoides was above $90\%$ at 3.7, 11.0 and 33.0${\mu}g/mL$ concentration after 12, 9 and 3 hrs, respectively. Ninety percent inhibition of other red tides, Gymnodinium sanguineum and Gyrodinium impudicum was observed when treated with 3.7${\mu}g/mL$ of purified compound within a period of 12 hrs. The microscopic view of red tides treated with purified compound showed the deformations such as cell node cuts and swelling of cells.

Intrinsic Flux Inequality in Forward Osmosis (FO) and Pressure-Retarded Osmosis (PRO) Processes (수학적 귀납법을 이용한 정삼투 및 압력지연삼투 공정의 투과율 불균형 해석)

  • Kim, Albert S.;Lee, Seung-won
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.367-372
    • /
    • 2015
  • In pressure-retarded osmosis (PRO) and forward osmosis (FO) processes, solvent (permeate) flux depends on which surface the draw solution faces. There are two operation modes. PRO mode indicates that the active layer faces the draw solution, and FO mode means that the porous substrate fronts the draw stream. It is often observed that the PRO mode produces higher flux than that of FO under the same operating conditions. The current work uses the method of proof by contradiction, and mathematically proves the intrinsic flux inequality between the two modes.

Review of Basics Reverse Osmosis Process Modeling: A New Combined Fouling Index Proposed (역삼투 공정을 위한 모델링 총설 및 새로운 복합적 막오염도의 제안)

  • Kim, Albert S.
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.291-312
    • /
    • 2017
  • Seawater desalination is currently considered to be one of the primary technologies to resolve the global water scarcity problem. A basic understanding of membrane filtration phenomena is significant not only for further technological development but also for integrated design, optimal control, and long-term maintenance. In this vein, the present work reviews the major transport and filtration models, specifically related to reverse osmosis phenomena, provides theoretical insights based on statistical mechanics, and discusses model-based physical meanings as related to their practical implications.

Desalinization Characteristics after Reclamation of Tidal Flat on the Western Coast of Korea (서해안 간척지 토양의 탈염특성)

  • 민병미;김준호
    • The Korean Journal of Ecology
    • /
    • v.20 no.4
    • /
    • pp.275-283
    • /
    • 1997
  • Vertical and temporal characteristics of desalinized reclaimed soil were analyzed from reclaimed coastal land on the western coast of Korea. Of the vertical changes during desalting, pH valuse were the lowest at the topsoil without regard to reclaimation time. The content of C1 were designated as the early period (the first 2-4 years) which decreased exponentially and the later period(the last 5-7 years) which was almost constant, from top to down. In temporal changes of the soil attributes, pH values increased for 5 years and decreased at 6 year after reclamation. Chlorine leaches more rapidly than Na does, K and Ca are constant but Mg increases as time elapsed after reclamation. Sometimes the content of Ca and K in the reclaimed soil are of higher concentration than that of the seawater after reclamation. During desallinization as exemplified by decreasing EC of the soil, Cl and Na are rapidly leached, but K, Ca and Mg are somewhat enhanced. The ration of Na/Cl in the soil equals 1 when the EC registers 5 mmho and then increases dramatically as the EC decreases. Rapid leaching of $Cl^{-}$ elicits an increasing pH valus. The electrostatic balance of the soil is achived by replacement of $Cl^{-}$ with $OH^{-}$ until stationary or until a decreasing pH value is reached again.

  • PDF

Bloom of a Filamentous Green Alga Cladophora vadorum (Areschoug) Kützing and Nutrient Levels at Shangrok Beach, Buan, Korea (부안 상록해수욕장의 사상 녹조류 금발대마디말(Cladophora vadorum) 대량발생과 영양염 농도)

  • Ha, Dong Soo;Yoo, Hyun Il;Chang, Soo Jung;Hwang, Eun Kyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.241-246
    • /
    • 2016
  • A filamentous green alga Cladophora vadorum (Areschoug) Kützing, bloomed at Shangrok Beach, Buan, Republic of Korea, in September 2015. This alga is currently distributed worldwide. Concentrations of total nitrogen (TN), total phosphorus (TP), dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) were analyzed in the bloom area and compared to those of other areas in the vicinity. DIN and DIP concentrations were similar to those of other areas. However, TN and TP were as much as six and ten times higher than in other areas, respectively. As in other Cladophora species, the bloom of C. vadorum at Shangrok Beach in 2015 appears to have depended on the TP concentration in the seawater. This suggests that blooms in the area can be controlled by reducing TP.

Prevention of membrane fouling by roughing filter for the stand-alone MD process (해수담수화 막 증류 공정에서 유입수 전처리 적용에 따른 막 오염 평가)

  • Yun, Taekgeun;Jeong, Seongpil;Kim, Hyewon;Hong, Seungkwan;Lee, Seockheon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.301-307
    • /
    • 2018
  • Membrane distillation (MD) is a thermally driven desalination process with a hydrophobic membrane. MD process has been known to have a lower fouling potential compared to other pressure-based membrane desalination process (NF, RO). However, membrane fouling also occurs in MD process. In this study, the membrane fouling was observed in MD process according to the pre-treatment processes. The filtration and precipitation processes were applied as the pre-treatment to prevent the membrane fouling. The pore sizes of roughing filters were 0.4, 5, 10, 30, and $60{\mu}m$. The concentration of the coagulant was 1.2 mg/L as $FeCl_3$. The membrane fouling on MD membrane was successfully removed with both pre-treatment processes.

ACCUMULATION OF HEAVY METALS IN KOREAN MARINE SEAWEEDS (해조류의 중금속 축적에 관한 연구)

  • Kim, Sin-Yeong;M.Sidharthan;Yu, Yong-Hun;Im, Chi-Yeong;Jin, Hyeong-Ju;Yu, Jong-Su;Sin, Hyeon-Ung
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.349-354
    • /
    • 2003
  • This paper reports that the heavy metal accumulation in marine seaweeds. Algal samples collected from Korean coast were analyzed to determine the concentrations of Cu, Cd, Cr, Zn and Pb. In general, heavy metals were found to be concentrated in many kinds of Korean seaweeds. The concentration levels of accumulated heavy metals in the marine seaweeds was in the following order: Zn > Cu > Cr > Pb > Cd. The concentrations of the heavy metals in the seawater were the highest in Iyajin harbor. Sargassum horneri, a brown alga accumulated high concentrations of Cu (80.66 ${\mu}g{\cdot}g^{-1}$ dw) and Cr (31.54 ${\mu}g{\cdot}g^{-1}$ dw). The high concentrations of heavy metals were accumulated in the brown algae.

Influence of NaCl on the Growth and Metabolism of Halomonas salina

  • YUN , SU-HEE;SANG , BYUNG-IN;PARK, DOO-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.118-124
    • /
    • 2005
  • In this research, we examined the effect of NaCl on the growth, energy metabolism, and proton motive force of Halomonas salina, and the effect of compatible solutes on the bacterium growing in the high salinity environment. H. salina was isolated from seawater and identified by 16srDNA sequencing. The growth of H. salina was not enhanced by the addition of external compatible solutes (choline and betaine) in the high salinity environment. The resting cells of H. salina absorbed more glucose in the presence of 2.0 M NaCl than in its absence. H. salina did not grow in the medium with either KCl, RbCl, CsCl, $Na_2SO_4$, or $NaNO_3$, in place of NaCl. The optimal concentration of NaCl for the growth of H. salina ranged from 1.4 M to 2.5 M, and the growth yield was decreased in the presence of NaCl below 1.4M and above 2.5M. The activity of isocitrate dehydrogenase, pyruvate dehydrogenase, and malate dehydrogenase of H. salina was not inhibited by NaCl in in vitro test. The proton translocation of H. salina was detected in the presence of NaCl only. These results indicate that NaCl is absolutely required for the normal growth and energy metabolism of H. salina, but the bacterial growth is not enhanced by the compatible solutes added to the growth medium.

Development of a Functional Mortar for Restraining Surface Algal Growth

  • Park, Soon-young;Kim, Jinhyun;Kang, Hojeong
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.82-87
    • /
    • 2018
  • Proliferation of algae on the surface of concrete or mortar in aquatic habitat has a negative impact on maintenance of concrete-based structures. Growth of algae may decrease stability of structure by bio-deterioration. In this study, we developed a functional mortar for restraining bio-deterioration by using $Cu^{2+}$ ion. The mortar contains soluble glass beads made of $Cu^{2+}$ ion, which can dissolve into water slowly. Mortars prepared with different ratio of glass beads (0, 2, 5, 10, and 15%) were placed in a culture medium with algae and incubated over a month period. Water chemistry, chlorophyll-a, and extracellular enzyme activities were measured. The incubation was conducted in both freshwater and seawater conditions, to assess applicability to both aquatic conditions. Overall, mortar with Cu glass exhibited lower chlorophyll-a content, suggesting that the functional mortar reduced algal growth. DOC concentration increased because debris of dead algae increased. Cu glass also decreased phosphatase activity, which is involved in the regeneration of inorganic P from organic moieties. Since, P is often a limiting nutrient for algal production, algal growth may be inhibited. Activities of ${\beta}$-glucosidase and N-acetylglucosaminidase were not significantly affected because carbon and nitrogen mineralization may not be influenced by the Cu glass beads. Our study suggests that functional mortar with Cu glass beads may reduce the growth of algae on the surface, while it has little environmental impact.

Wastewater Treatment Process Study for Used Diaper Recycling (사용 후 기저귀 재활용을 위한 폐수처리방안 연구)

  • Kim, Kyung Shin;Lee, Ho Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.24-33
    • /
    • 2015
  • This study aims to suggest wastewater treatment options for diaper recycling by identifying characteristic analysis of wastewater from diaper recycling process and efficiency evaluation of wastewater treatment units. The wastewater characteristic analysis showed that the concentration of organic pollutants and ionic materials were very high comparing to seawater. Through the investigation of similar wastewater treatment, six treatment units were identified to reduce pollutants. It is found UF(ultra-filtration), DAF(dissolved air flotation), fenton oxidation, electro-coagulation and chemical-coagulation are effective in reducing organic pollutants while membrane system and ion exchanger are effective in reducing ionic materials. Even though the target of water quality should be secured in terms of managing organic pollutants level, the application of treatment unit for reducing ionic material needs lots of considerations. This result suggests that reuse of pulping wastewater after controlling organic pollutants is better than direct discharge of pulping wastewater. To select the appropriate wastewater treatment unit, an economic analysis about operation condition, wastewater flow, cost, efficiency should be considered.