DOI QR코드

DOI QR Code

Review of Basics Reverse Osmosis Process Modeling: A New Combined Fouling Index Proposed

역삼투 공정을 위한 모델링 총설 및 새로운 복합적 막오염도의 제안

  • Kim, Albert S. (Civil and Environmental Engineering, University of Hawaii at Manoa)
  • Received : 2017.08.28
  • Accepted : 2017.08.29
  • Published : 2017.08.31

Abstract

Seawater desalination is currently considered to be one of the primary technologies to resolve the global water scarcity problem. A basic understanding of membrane filtration phenomena is significant not only for further technological development but also for integrated design, optimal control, and long-term maintenance. In this vein, the present work reviews the major transport and filtration models, specifically related to reverse osmosis phenomena, provides theoretical insights based on statistical mechanics, and discusses model-based physical meanings as related to their practical implications.

해수담수화는 최근 전 세계적으로 대두되고 있는 물부족 현상을 해결하기 위한 최적 기술 중 하나이다. 막분리 및 투과 현상의 근본적인 이해는 차후의 막여과 기술의 발전을 위해서 뿐만 아니라, 현재 막기술 증진을 위한 통합적 디자인, 최적화 제어법, 그리고 중장기적 유지관리를 위해서도 매우 중요하다. 이에, 본 연구는 물질 전달 및 여과 현상에 대한 기존의 주요 모델들을 상세히 재검토하고, 통계물리학에 근간하여 주요 막분리 현상들을 이론적으로 분석하며, 원천적 모델에 기초한 물리적 의미와 그들이 실제 막공정에서 미치는 영향들에 대해서 함축적으로 토의하고자 한다. 이론적 재검토의 과정에서 새로이 유도된 복합적 막오염도(Combined Fouling Index (CFI))의 소개도 포함한다.

Keywords

References

  1. S. Loeb and S. Sourirajan, "Sea water demineralization by means of semipermeable membrane", UCLA report, 60-60, 1 (1960).
  2. D. Talbot, "Megascale Desalination", MIT Technology Review, March/April (2015).
  3. S. Loeb, "The Loeb-Sourirajan Membrane: How It Came About", in "Synthetic Membranes", Am. Chem. Soc., 153, 1 (1981).
  4. J. Glater, "The early history of reverse osmosis membrane development", Desalination, 117, 297 (1998). https://doi.org/10.1016/S0011-9164(98)00122-2
  5. S. Sourirajan, "Reverse Osmosis", Academic Press, Los Angeles, CA (1970).
  6. C. E. Reid and E. J. Breton, "Water and ion flow across cellulosic membranes", J. Appl. Polymer Sci., 1, 133 (1959). https://doi.org/10.1002/app.1959.070010202
  7. T. A. Orofino, H. B. Hopfenberg, and V. Stannett, "Characterization of penetrant clustering in polymers", J. Macromol. Sci. B, 3, 777 (1969). https://doi.org/10.1080/00222346908217120
  8. H. K. Lonsdale, U. Merten, and R. L. Riley, "Transport properties of cellulose acetate osmotic membrane", J. Appl. Polymer Sci., 9, 1341 (1965). https://doi.org/10.1002/app.1965.070090413
  9. R. L. Riley, H. K. Lonsdale, C. R. Lyons, and U. Merten, "Preparation of ultrathin reverse osmosis membranes and the attainment of theoretical salt rejection", J. Appl. Polymer Sci., 11, 2143 (1967). https://doi.org/10.1002/app.1967.070111106
  10. T. K. Sherwood, P. L. T. Brian, and R. E. Fisher, "Desalination by reverse osmosis process", I&EC Fund., 17, 2 (1968).
  11. J. P. Agrawal and S. Sourirajan, "Specification, selectivity, and performance of porous cellulose acetate membranes in reverse osmosis", I&EC Proc. Des. Devel., 8, 439 (1969). https://doi.org/10.1021/i260032a002
  12. E. Glueckauf, "The distribution of electrolytes between cellulose acetate membranes and aqueous solutions", Desal., 18, 155 (1976). https://doi.org/10.1016/S0011-9164(00)84099-0
  13. J. Wijmans and R. Baker, "The solution-diffusion model: A review", J. Membr. Sci., 107, 1 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  14. D. R. Paul, "Reformulation of the solution-diffusion theory of reverse osmosis", J. Membr. Sci., 241, 371 (2004). https://doi.org/10.1016/j.memsci.2004.05.026
  15. L. Onsager, "Reciprocal relations in irreversible processes. I.", Phys. Rev., 37, 405 (1931). https://doi.org/10.1103/PhysRev.37.405
  16. L. Onsager, "Reciprocal relations in irreversible processes. II", Phys. Rev., 38, 2265 (1931). https://doi.org/10.1103/PhysRev.38.2265
  17. O. Kedem and A. Katchalsky, "Thermodynamic analysis of the permeability of biological membranes to non-electrolytes", Biochim. Biophys. Acta, 27, 229 (1958). https://doi.org/10.1016/0006-3002(58)90330-5
  18. K. S. Spiegler and O. Kedem, "Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes", Desal., 1, 311 (1966). https://doi.org/10.1016/S0011-9164(00)80018-1
  19. M. Soltanieh and W. N. Gill, "Review of reverse osmosis membranes and transport models", Chem. Eng. Comm., 12, 279 (1981). https://doi.org/10.1080/00986448108910843
  20. D. Potts, R. Ahlert, and S. Wang, "A critical review of fouling of reverse osmosis membranes", Desal., 36, 235 (1981). https://doi.org/10.1016/S0011-9164(00)88642-7
  21. M. F. A. Goosen, S. S. Sablani, H. Al-Hinai, S. Al-Obeidani, R. Al-Belushi, and D. Jackson, "Fouling of reverse osmosis and ultrafiltration membranes: A critical review", Sep. Sci. Tech. 39, 2261 (2005). https://doi.org/10.1081/SS-120039343
  22. D. Li and H. Wang, "Recent developments in reverse osmosis desalination membranes", J. Mat. Chem., 20, 4551 (2010). https://doi.org/10.1039/b924553g
  23. S. Sobana and R. C. Panda, "Identification, modelling, and control of continuous reverse osmosis desalination system: A review", Sep. Sci. Tech., 46, 551 (2011). https://doi.org/10.1080/01496395.2010.534526
  24. K. P. Lee, T. C. Arnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination- Development to date and future potential", J. Membr. Sci., 370, 1 (2011). https://doi.org/10.1016/j.memsci.2010.12.036
  25. L. Malaeb and G. M. Ayoub, "Reverse osmosis technology for water treatment: State of the art review", Desal., 267, 1 (2011). https://doi.org/10.1016/j.desal.2010.09.001
  26. S. Sablani, M. Goosen, R. Al-Belushi, and M. Wilf, "Concentration polarization in ultrafiltration and reverse osmosis: A critical review", Desal., 141, 269 (2001). https://doi.org/10.1016/S0011-9164(01)85005-0
  27. G. Amy, N. Ghaffour, Z. Li, L. Francis, R. V. Linares, T. Missimer, and S. Lattemann, "Membranebased seawater desalination: Present and future prospects", Desal., 401, 16-21 (2017). https://doi.org/10.1016/j.desal.2016.10.002
  28. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, "Science and technology for water purification in the coming decades", Nature, 452, 301 (2008). https://doi.org/10.1038/nature06599
  29. M. Elimelech and W. A. Phillip, "The future of seawater desalination: energy, technology, and the environment.", Science, 333, 712 (2011). https://doi.org/10.1126/science.1200488
  30. B. E. Logan and M. Elimelech, "Membrane-based processes for sustainable power generation using water", Nature, 488, 313-319 (2012). https://doi.org/10.1038/nature11477
  31. H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity.", Science, 356, 1 (2017).
  32. W. J. Koros and C. Zhang, "Materials for nextgeneration molecularly selective synthetic membranes", Nat. Mat., 16, 289 (2017). https://doi.org/10.1038/nmat4805
  33. H. K. Lonsdale, U. Merten, and R. L. Riley, "Transport properties of cellulose acetate osmotic membranes", J. Appl. Polymer Sci., 9, 1341 (1965). https://doi.org/10.1002/app.1965.070090413
  34. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Boston, MA (1996).
  35. A. L. Zydney and C. K. Colton, "A concentration polarization model for the filtrate flux in cross-flow microfiltration of particulate suspensions", Chem. Eng. Comm., 47, 1 (1986). https://doi.org/10.1080/00986448608911751
  36. A. Zydney, "Stagnant film model for concentration polarization in membrane systems", J. Membr. Sci., 130, 275 (1997). https://doi.org/10.1016/S0376-7388(97)00006-9
  37. A. S. Kim, "Permeate flux inflection due to concentration polarization in crossflow membrane filtration: A novel analytic approach", Euro. Phys. J. E, 24, 331 (2008).
  38. J. C. Schippers and J. Verdouw, "The modified fouling index, a method of determining the fouling characteristics of water", Desal., 32, 137 (1980). https://doi.org/10.1016/S0011-9164(00)86014-2
  39. S. Khirani, R. Ben Aim, and M. H. Manero, "Improving the measurement of the Modified Fouling Index using nanofiltration membranes (NF-MFI)", Desal., 191, 1 (2006). https://doi.org/10.1016/j.desal.2005.07.019
  40. G. Mason, "Radial Distribution of the random close packing of equal spheres", Nature, 217, 733 (1968). https://doi.org/10.1038/217733a0
  41. W. M. Visscher and M. Bolsterli, "Random packing of equal and unequal spheres in two and three dimensions", Nature, 239, 504 (1972). https://doi.org/10.1038/239504a0
  42. A. E. Contreras, A. S. Kim, and Q. Li, "Combined fouling of nanofiltration membranes: Mechanisms and effect of organic matter", J. Membr. Sci., 327, 87 (2009). https://doi.org/10.1016/j.memsci.2008.11.030
  43. A. S. Kim, A. E. Contreras, Q. Li, and R. Yuan, "Fundamental mechanism of three-component combined fouling with experimental verification", Langmuir, 25, 7815 (2009). https://doi.org/10.1021/la803706n
  44. Y. Yu, S. Lee, K. Hong, and S. Hong, "Evaluation of membrane fouling potential by multiple membrane array system (MMAS): Measurements and applications", J. Membr. Sci., 362, 279 (2010). https://doi.org/10.1016/j.memsci.2010.06.038
  45. Y. Kim, M. Elimelech, H. K. Shon, and S. Hong, "Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure", J. Membr. Sci., 460, 206 (2014). https://doi.org/10.1016/j.memsci.2014.02.038