• Title/Summary/Keyword: seasonal sedimentary characteristics

Search Result 18, Processing Time 0.02 seconds

Importance and Application of Ichnology (생흔학의 중요성 및 활용)

  • Kim, Jong-Kwan;Chun, Seung-Soo;Baek, Young-Sook;Chang, Eun-Kyong;Shin, Sun-Ja
    • The Korean Journal of Petroleum Geology
    • /
    • v.12 no.1
    • /
    • pp.34-42
    • /
    • 2006
  • Ichnology is the study of traces made by various organisms, which includes classification and description of traces, and interpretation of sedimentary process, behavior of organism and depositional environment based on traces and organism behavior. Ichnofacies, which is defined as the association of several traces related together with substrate characteristics and sedimentary processes, is closely related to depositional environment. Ichnology has been applied to sedimentology (to understand physical characteristics of depositional environment, sedimentation pattern and event bed), sequence stratigraphy (to recognize sequence boundaries and biostratigraphic discontinuities such as MFS, TSE and RSE), oil exploration (providing of many information without big cost) and palaeocology. Preliminary ichnological study on the Ganghwa intertidal flat shows that dominant ichofacies are changing with season and location, suggesting that their seasonal variation would be a good indicator to understand the seasonal change of sedimentary processes, the small- scale change of sedimentary environment and the preservation potential of such units. Ichnology on intertidal flat in western coast of Korea has a great potential to apply its results to petroleum geology as well as sedimentology.

  • PDF

Spatial Distribution Patterns of Common Species of Macrobenthos in Biin Bay of the Yellow Sea, Korea (비인만 대형저서동물의 전 군집 공통 출현종에 관한 공간분포 특성)

  • KOH, Byoung-Seol;CHOI, Ok-In;JO, Young-Jo;SONG, Jae-Hee;KWON, Dae-Hyeon;LEE, Chang-Il;LEE, Dong-Yup
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.13-24
    • /
    • 2007
  • This study was conducted to confirm if spatial distribution of macrobenthic fauna were related with sedimentary characteristics. Sedimentary characteristics were compared in each community after carrying of community analysis based upon species composition. Macrobenthic animals were distinguished with 4 communities based on the tidal level, of which 3 communities were divided into two groups on the sediment composition. Common species which were presented in all communities, Nephtys californiensis Hartman 1938, Haploscoloplos elongatus Johnson 1901, Glycera sp., Heteromastus sp. Notomastus sp. Timarete amtarctica Mono 1930, Glysinde sp., Lumbrineris japonica Marenzeller 1879 were having different appearance densities at each community area caused by different sedimentary characteristics. But only two species among the common species have a correlation significantly. Temporal variation of common species could not be recognised because of 4 times of seasonal investigation was not enough know their life cycles. So, in the future more frequently sampling method should be required.

  • PDF

Seasonal Sedimentary Characteristics and Depositional Environments after the Construction of seawall on the Iwon Macrotidal Flat (방조제 건설 후 이원 대조차 조간대의 계절별 퇴적학적 특성 및 퇴적환경)

  • Kum, Byung-Cheol;Park, Eun-Young;Lee, Hi-Il;Oh, Jae-Kyung;Shin, Dong-Hyeok
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.615-628
    • /
    • 2004
  • In order to elucidate seasonal sedimentary characteristics and depositional environment after construction of seawall on macrotidal flat, a seasonal observations of surface sediments (total 450) and sedimentation rates on 4 transects have been investigated for 2 years. The eastern area of Iwon tidal flat, has been changed from semi-closed coast to open coast by construction of seawall, shows general seasonal changes similar to characteristics of open coast type, which represented both fining and bad sorted distribution due to deposition of fine sediments under low energy condition in the summer, and relatively coarser and better sorted distribution because of erosion of fine sediments in the winter. In considering angles of transects, distribution patterns of surface sediments, the northern and southern parts of eastern tidal flat are dominantly influenced by wave and tidal effects, respectively. As time goes by, the eastern tidal flat shows coarsening-trend of surface sediments caused by direct effect of tidal current, were and typhoon. Meanwhile the western area of seawall, which has been re-formed by construction seawall, is sheltered from northwesterly seasonal wind. The seasonal change pattern of western area of seawall is slightly different from that of eastern tidal flat. Mean grain size and sorting of surface sediments during spring is finer and worse than those during summer. This seasonal change pattern maybe influenced by topographic effects caused from the construction of seawall. In consideration of all result, the transport of fine sediments in the study area, which is supplied to limited sediments, shows clockwise circulation pattern that fine sediments are transported from the eastern tidal flat to the western area of seawall because of blocking of seawall in the winter and are transported reversed direction the summer. As a result, many changes have been observed in the study area after construction of seawall; however, this change is still in progress and is expected to need continuous monitoring.

Sedimentary Characteristics in the Tidal Flat of Janghwa-ri, Kangwha Island, Eastern Yellow Sea (강화도 장화리 조간대의 퇴적 특성)

  • Oh, Jae-Kyoung;Do, Jong-Dae;Jo, Yong-Gu
    • Journal of the Korean earth science society
    • /
    • v.27 no.3
    • /
    • pp.328-340
    • /
    • 2006
  • In Janghwa-ri of Kanghwa Island morphological changes in four transects, 112 surface, and 2 core sediments were analyzed to understand the seasonal variation of the muddy tidal-flat environment. Sedimentary of facies can be classified into four facies; sand, muddy sand, sandy mud, and silt. During winter, the coarse-grained sediment facies expanded seaward. In the subsurface part of the core sediments, poorly sorted silty sediments dominate the area. According to the Pb-210 isotope analysis, accumulation rates of the tidal flat in Jangwha-ri appear to be $5{\sim}19mm/yr$. In the study area, the result is suggestive of a rapid change in depositional environments in recent years.

Characteristics of Sedimentary Environments in Gamak Bay based on Numerical Experiments (수치실험에 기초한 가막만의 퇴적 환경 특성)

  • Kim, Byeong Kuk;Park, Sung Jin;Lee, Moon Ock;Lee, Yeon Gyu;Kim, Jong Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • We carried out numerical experiments to understand sedimentary environments in Gamak Bay where is located in the center of the southern coast of Korea. Deposition rates in Gamak Bay appeared to increase in the autumn and spring whereas they appeared to decrease in the summer and winter. These seasonal variations qualitatively coincided with seasonal variations of Ignition Loss (IL) for surface sediments. Furthermore, deposition rates turned out to be prevalent compared to erosion rates in most areas of the bay. On the other hand, current measurement results at both the northeast and south mouths of the bay showed their residual components to flow into the bay. Therefore, we can conclude that contaminated materials flowing into Gamak Bay will precipitate to be deposited in the bay as long as there is no specific events such as dredging.

Seasonal Variations of Sedimentary Processes on Mesotidal Beach in Imjado, Southwestern Coast of Korea (한반도 서해남부 임자도 해빈 퇴적작용의 계절적 변화)

  • 류상옥;장진호;조주환;문병찬
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • A continuous monitoring of textural characteristics of surface sediments, sedimentation rates and beach profile was carried out to investigate the seasonal variations of sedimentary processes in the Imjado beach, southwestern coast of Korea for two years. The beach profiles consist of steep beach face and relatively flat middle and low tide beaches. The slope of the beach face increases in summer and decreases in winter, in good accordance with the standard beach cycle. Ridge and runnel systems are well developed in the middle and low tide beaches during the summer, but these structures are replaced by mega-ripples during the winter. The sediments are fining southward as well as landward. The mean grain-size tends to be increasingly coarser during seasons of autumn and winter on the north beach and during seasons of winter and spring on the south one. In addition, the sediments are eroded on the north beach and accumulated on the south one as a whole. These are probably due to southward transportation of the sediments as long-shore current (NE-SW) runs around the coastal line of the beach. However, the seasonal variations in accumulation rates are very complex and irregular. It is considered that the Imjado beach represents in non-equilibrium state, as a result of coastal and submarine topographic changes by artificial agents and sea-level uprising associated with global warming.

Analysis on the Sedimentary Environment and Microphytobenthos Distribution in the Geunso Bay Tidal Flat Using Remotely Sensed Data (원격탐사 자료를 이용한 근소만 갯벌 퇴적환경 및 저서미세조류 환경 분석)

  • Choi, Jong-Kuk;Ryu, Joo-Hyung;Eom, Jin-Ah;Roh, Seung-Mok;Noh, Jae-Hoon
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.67-78
    • /
    • 2010
  • Surface sedimentary facies and the change of microphytobenthos distribution in Geunso Bay tidal flat were monitored using remotely sensed data. Sediment distribution was analyzed along with the spectral reflectance based on the in situ data, and the spectral characteristics of the area where microphytobenthos occupied was examined. A medium to low spatial resolution of satellite image was not suitable for the detection of the surface sediments changes in the study area due to its ambiguity in the sedimentary facies boundary, but the seasonal changes of microphytobenthos distribution could be obviously detected. However, area of predominance of sand grains and seagrass distribution could be distinctly identified from a high spatial resolution remote sensing image. From this, it is expected that KOMPSAT-2 satellite images can be applied effectively to the study on the surface sedimentary facies and detailed ecological mapping in a tidal flat.

Depositional Characteristics and Seasonal Change of Surface Sediment and Sedimentary Strucutre on the Doowoovi Tidal Flat, Southwestern Coast of Korea (한국 서남해안 두우리 조간대에서 표층 퇴적물 및 퇴적구조의 특성과 계절변화)

  • Baek Young Suk;Chun Seungsoo
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.10-17
    • /
    • 2004
  • The Doowoo-ri tidal flat in the southwestern Korean coast is a typical open-coast tidal flat which has no barriers in the offshore such as barrier island and sand bars. The difference of induced wave energy with seasons is affected directly on the distribution of surface sediment and the formation of sedimentary structures because the sedimentation by wind wave is relatively much important element in this open-coast tidal flat. This open-coast tidal flat can be classified into tidal beach, intertidal flat and lower mudflat according to the pattern of geomorphology and sediment type. The intertidal flat can be again divided into 3 types: sand flat, mixed flat and mud flat based on the primary sedimentary structure and sand/mud ratio. Doowoori tidal flat shows a seasonal change in the surface sedimentary facies based on sediment composition and primary sedimentary structure. The change is closely related to the direction and magnitude of monsoon wind and also to storm frequency. In winter and spring, when northwesterly wind is most dominant and strong and also storms are common, sand-flat facies is largely distributed on the intertidal flat, whereas mud-flat facies is most dominant during summer when weak southeasterly wind is common. In the fall season, mixed-flat facies is dominant on the flat. The Doowoori intertidal flat is covered by mud sediment which is ca. 20 cm in thickness in summer season. In winter season, surface sediment is changed from mud to sand because the summer mud is mostly eroded by strong wave action. Can-core peels in the intertidal flat show that parallel laminated mud or sand/mud and climbing ripple cross-laminated sandy silt are dominant on the upper intertidal flat $(0-1.3 {\cal}km)$ during summer season. On the other hand, on lower intertidal flat $(1.7-2.3 {\cal}km)$, dominant sedimentary facies is homogeneous mud. In winter, it is changed into parallel laminated and ripple cross-laminated sand facies.

  • PDF

Changes in Sediment Characteristics in the Eastern Tidal Flat of Donggum Island in Ganghwa, west coast of Korea (강화 동검도 동부 갯벌의 퇴적 특성 변화)

  • Woo, Han Jun;Jang, Seok;Kwon, Su Jae
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.375-384
    • /
    • 2012
  • The sedimentary processes of the Ganghwa tidal flat has been changed over 20 years because of the large-scale construction projects. The sedimentary environment of the Donggum tidal flat, located in the eastern part of Ganghwa tidal flat and in the lower reaches of Yeomha channel, was affected by changes the tidal current regime and estuarine circulation. These resulted an occurrence of rapid deposition in the tidal flat. The silt-clay laminated silt facies in the upper parts of two core sediments suggested that deposition had been relatively high in the tidal flat. The sedimentation rates from the cores using $^{210}Pb$ analysis were 3.25cm/year(st. 3) and 3.47cm/year(st. 5). However the short-term sediment accumulation rates from 2010 to 2012 were mostly less than 1cm/year, indicated that the sediments deposited relatively low rates. As a result, the sediment in the Donggum tidal flat rapidly accumulated during 2000s due to constructions of man-made structures. Recently, the increase of elevation in the tidal flat resulted to show relatively low sedimentation rate with seasonal variations.

Characteristics of Seasonal Variation to Sedimentary Environment at the Estuary area of the Nakdong (낙동강 하구역의 계절적인 퇴적환경 변화특성)

  • Yoon, Eun-Chan;Lee, Jong-Sup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.372-389
    • /
    • 2008
  • In this study, we formed a detailed grid at the estuary area of the Nakdong and collected the surface sediments. Particle size analysis and comparison with existing data were conducted to investigate the characteristics of seasonal and long-term changes in the sediments. As a result of investigation, the distribution of the sediments showed a great change per season and was greatly influenced by the quantity of outfall discharge at the Nakdong estuary barrier and the incident wave climate. The sandy sediments showed dominant movement toward the front of Jinwoodo west of the estuary area of the Nakdong due to the influence of the ENE wave, the annually-dominant wave. And the muddy sediments showed deposition by being moved toward the deep open sea along with a current. The present conditions of the sediments at the estuary area of the Nakdong showed great differences from the results of previous studies.