• Title/Summary/Keyword: seasonal forecasting

Search Result 222, Processing Time 0.038 seconds

A Model for Groundwater Time-series from the Well Field of Riverbank Filtration (강변여과 취수정 주변 지하수위를 위한 시계열 모형)

  • Lee, Sang-Il;Lee, Sang-Ki;Hamm, Se-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.673-680
    • /
    • 2009
  • Alternatives to conventional water resources are being sought due to the scarcity and the poor quality of surface water. Riverbank filtration (RBF) is one of them and considered as a promising source of water supply in some cities. Changwon City has started RBF in 2001 and field data have been accumulated. This study is to develop a time-series model for groundwater level data collected from the pumping area of RBF. The site is Daesan-myeon, Changwon City, where groundwater level data have been measured for the last five years (Jan. 2003$\sim$Dec. 2007). Minute-based groundwater levels was averaged out to monthly data to see the long-term behavior. Time-series analysis was conducted according to the Box-Jenkins method. The resulted model turned out to be a seasonal ARIMA model, and its forecasting performance was satisfactory. We believe this study will provide a prototype for other riverbank filtration sites where the predictability of groundwater level is essential for the reliable supply of water.

Numerical Estimates of Seasonal Changes of Possible Radionuclide Dispersion at the Kori Nuclear Power Plants (고리 원자력 발전 단지 사고 발생에 따른 방사능 물질 확산 가능성의 계절적 특성 연구)

  • Kim, Ji-Seon;Lee, Soon-Hwan;Park, Kang-Won;Lee, Sung-Gwang;Choi, Se-Young;Cho, Kyu-Chan;Lee, Hyeuk-Woo
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.425-436
    • /
    • 2018
  • To establish initial response scenarios for nuclear accidents around the Kori nuclear power plants, the potential for radionuclide diffusion was estimated using numerical experiments and statistical techniques. This study used the numerical model WRF (Weather Research and Forecasting) and FLEXPART (Flexible Particle dispersion model) to calculate the three-dimensional wind field and radionuclide dispersion, respectively. The wind patterns observed at Gijang, near the plants, and at meteorological sites in Busan, were reproduced and applied to estimates of seasonally averaged wind fields. The distribution of emitted radionuclides are strongly associated with characteristics of topography and synoptic wind patterns over nuclear power plants. Since the terrain around the power plants is complex, estimates of radionuclide distribution often produce unexpected results when wind data from different sites are used in statistical calculations. It is highly probable that in the summer and autumn, radionuclides move south-west, towards the downtown metropolitan area. This study has clear limitations in that it uses the seasonal wind field rather than the daily wind field.

Evaluation of Reproduced Precipitation by WRF in the Region of CORDEX-East Asia Phase 2 (CORDEX-동아시아 2단계 영역 재현실험을 통한 WRF 강수 모의성능 평가)

  • Ahn, Joong-Bae;Choi, Yeon-Woo;Jo, Sera
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.85-97
    • /
    • 2018
  • This study evaluates the performance of the Weather Research and Forecasting (WRF) model in reproducing the present-day (1981~2005) precipitation over Far East Asia and South Korea. The WRF model is configured with 25-km horizontal resolution within the context of the COordinated Regional climate Downscaling Experiment (CORDEX) - East Asia Phase 2. The initial and lateral boundary forcing for the WRF simulation are derived from European Centre for Medium-Range Weather Forecast Interim reanalysis. According to our results, WRF model shows a reasonable performance to reproduce the features of precipitation, such as seasonal climatology, annual and inter-annual variabilities, seasonal march of monsoon rainfall and extreme precipitation. In spite of such model's ability to simulate major features of precipitation, systematic biases are found in the downscaled simulation in some sub-regions and seasons. In particular, the WRF model systematically tends to overestimate (underestimate) precipitation over Far East Asia (South Korea), and relatively large biases are evident during the summer season. In terms of inter-annual variability, WRF shows an overall smaller (larger) standard deviation in the Far East Asia (South Korea) compared to observation. In addition, WRF overestimates the frequency and amount of weak precipitation, but underestimates those of heavy precipitation. Also, the number of wet days, the precipitation intensity above the 95 percentile, and consecutive wet days (consecutive dry days) are overestimated (underestimated) over eastern (western) part of South Korea. The results of this study can be used as reference data when providing information about projections of fine-scale climate change over East Asia.

Forecasting the Seaborne Trade Volume using Intervention Multiplicative Seasonal ARIMA and Artificial Neural Network Model (개입 승법계절 ARIMA와 인공신경망모형을 이용한 해상운송 물동량의 예측)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2015
  • The purpose of this study is to forecast the seaborne trade volume during January 1994 to December 2014 using the multiplicative seasonal autoregressive integrated moving average (ARIMA) along with intervention factors and an artificial neural network (ANN) model. Diagnostic checks of the ARIMA model were conducted using the Ljung-Box Q and Jarque-Bera statistics. All types of ARIMA process satisfied the basic assumption of residuals. The ARIMA(2,1,0) $(1,0,1)_{12}$ model showed the lowest forecast error. In addition, the prediction error of the artificial neural network indicated a level of 5.9% on hidden layer 5, which suggests a relatively accurate forecasts. Furthermore, the ex-ante predicted values based on the ARIMA model and ANN model are presented. The result shows that the seaborne trade volume increases very slowly.

Impact of Cumulus Parameterization Schemes on the Regional Climate Simulation for the Domain of CORDEX-East Asia Phase 2 Using WRF Model (WRF 모형의 적운 모수화 방안이 CORDEX 동아시아 2단계 지역의 기후 모의에 미치는 영향)

  • Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.105-118
    • /
    • 2017
  • This study assesses the performance of the Weather Research and Forecasting (WRF) model in reproducing regional climate over CORDEX-East Asia Phase 2 domain with different cumulus parameterization schemes [Kain-Fritch (KF), Betts-Miller-Janjic (BM), and Grell-Devenyi-Ensemble (GD)]. The model is integrated for 27 months from January 1979 to March 1981 and the initial and boundary conditions are derived from European Centre for Medium-Range Weather Forecast Interim Reanalysis (ERA-Interim). The WRF model reasonably reproduces the temperature and precipitation characteristics over East Asia, but the regional scale responses are very sensitive to cumulus parameterization schemes. In terms of mean bias, WRF model with BM scheme shows the best performance in terms of summer/winter mean precipitation as well as summer mean temperature throughout the North East Asia. In contrast, the seasonal mean precipitation is generally overestimated (underestimated) by KF (GD) scheme. In addition, the seasonal variation of the temperature and precipitation is well simulated by WRF model, but with an overestimation in summer precipitation derived from KF experiment and with an underestimation in wet season precipitation from BM and GD schemes. Also, the frequency distribution of daily precipitation derived from KF and BM experiments (GD experiment) is well reproduced, except for the overestimation (underestimation) in the intensity range above (less) then $2.5mm\;d^{-1}$. In the case of the amount of daily precipitation, all experiments tend to underestimate (overestimate) the amount of daily precipitation in the low-intensity range < $4mm\;d^{-1}$ (high-intensity range > $12mm\;d^{-1}$). This type of error is largest in the KF experiment.

The Estimation of the Future Container Ship Traffic for Three Major Ports in Korea (국내 3대 주요 컨테이너항만의 장래 컨테이너선박 교통량 추정)

  • Kim, Jung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.353-359
    • /
    • 2007
  • Effective plan and operation managements can be established in advance if the traffic volume of container ship will be forecasted in the trend for container port's cargo volume to increase. At the viewpoint for marine traffic the number of incoming and outgoing container ship can be presumed in the long run and organised rational plan to deal the demand of marine traffic on the basis. Therefore, the paper estimated the future traffic volume of incoming and outgoing container ship for Busan, Gwangyang, and Incheon port on a forecasting data basis of container volume suggested in the national ports base plan. The trends of volume per ship on container were estimated with ARIMA models and seasonal index was computed. Thus the traffic volume of container ship in the future was estimated computing with volume per ship in 2011,2015, and 2020 respectively.

Assessment of Stratospheric Prediction Skill of the GloSea5 Hindcast Experiment (GloSea5 모형의 성층권 예측성 검증)

  • Jung, Myungil;Son, Seok-Woo;Lim, Yuna;Song, Kanghyun;Won, DukJin;Kang, Hyun-Suk
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.203-214
    • /
    • 2016
  • This study explores the 6-month lead prediction skill of stratospheric temperature and circulations in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment over the period of 1996~2009. Both the tropical and extratropical circulations are considered by analyzing the Quasi-Biennial Oscillation (QBO) and Northern Hemisphere Polar Vortex (NHPV). Their prediction skills are quantitatively evaluated by computing the Anomaly Correlation Coefficient (ACC) and Mean Squared Skill Score (MSSS), and compared with those of El Nino-Southern Oscillation (ENSO) and Arctic Oscillation (AO). Stratospheric temperature is generally better predicted than tropospheric temperature. Such improved prediction skill, however, rapidly disappears in a month, and a reliable prediction skill is observed only in the tropics, indicating a higher prediction skill in the tropics than in the extratropics. Consistent with this finding, QBO is well predicted more than 6 months in advance. Its prediction skill is significant in all seasons although a relatively low prediction skill appears in the spring when QBO phase transition often takes place. This seasonality is qualitatively similar to the spring barrier of ENSO prediction skill. In contrast, NHPV exhibits no prediction skill beyond one month as in AO prediction skill. In terms of MSSS, both QBO and NHPV are better predicted than their counterparts in the troposphere, i.e., ENSO and AO, indicating that the GloSea5 has a higher prediction skill in the stratosphere than in the troposphere.

Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 지역기후모형 기반 미국 강수 및 가뭄의 계절 예측 성능 개선)

  • Song, Chan-Yeong;Kim, So-Hee;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.637-656
    • /
    • 2021
  • The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.

Development of Long-Term Electricity Demand Forecasting Model using Sliding Period Learning and Characteristics of Major Districts (주요 지역별 특성과 이동 기간 학습 기법을 활용한 장기 전력수요 예측 모형 개발)

  • Gong, InTaek;Jeong, Dabeen;Bak, Sang-A;Song, Sanghwa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2019
  • For power energy, optimal generation and distribution plans based on accurate demand forecasts are necessary because it is not recoverable after they have been delivered to users through power generation and transmission processes. Failure to predict power demand can cause various social and economic problems, such as a massive power outage in September 2011. In previous studies on forecasting power demand, ARIMA, neural network models, and other methods were developed. However, limitations such as the use of the national average ambient air temperature and the application of uniform criteria to distinguish seasonality are causing distortion of data or performance degradation of the predictive model. In order to improve the performance of the power demand prediction model, we divided Korea into five major regions, and the power demand prediction model of the linear regression model and the neural network model were developed, reflecting seasonal characteristics through regional characteristics and migration period learning techniques. With the proposed approach, it seems possible to forecast the future demand in short term as well as in long term. Also, it is possible to consider various events and exceptional cases during a certain period.

  • PDF

Comparing Monthly Precipitation Predictions Using Time Series Analysis with Deep Learning Models (시계열 분석 및 딥러닝 모형을 활용한 월 강수량 예측 비교)

  • Chung, Yeon-Ji;Kim, Min-Ki;Um, Myoung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.443-463
    • /
    • 2024
  • This study sought to improve the accuracy of precipitation prediction by utilizing monthly precipitation data for each region over the past 30 years. Using statistical models (ARIMA, SARIMA) and deep learning models (LSTM, GBM), we learned monthly precipitation data from 1983 to 2012 in Gangneung, Gwangju, Daegu, Daejeon, Busan, Seoul, Jeju, and Chuncheon. Based on this, monthly precipitation was predicted for 10 years from 2013 to 2022. As a result of the prediction, most models accurately predicted the precipitation trend, but showed a tendency to underpredict the actual precipitation. To solve these problems, appropriate models were selected for each region and season. The LSTM model showed suitable results in Gangneung, Gwangju, Daegu, Daejeon, Busan, Seoul, Jeju, and Chuncheon. When comparing forecasting power by season, the SARIMA model showed particularly suitable forecasting performance in winter in Gangneung, Gwangju, Daegu, Daejeon, Seoul, and Chuncheon. Additionally, the LSTM model showed higher performance than other models in the summer when precipitation is concentrated. In conclusion, closely analyzing regional and seasonal precipitation patterns and selecting the optimal prediction model based on this plays a critical role in increasing the accuracy of precipitation prediction.