Browse > Article
http://dx.doi.org/10.14191/Atmos.2018.28.1.085

Evaluation of Reproduced Precipitation by WRF in the Region of CORDEX-East Asia Phase 2  

Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University)
Choi, Yeon-Woo (Division of Earth Environmental System, Pusan National University)
Jo, Sera (Division of Earth Environmental System, Pusan National University)
Publication Information
Atmosphere / v.28, no.1, 2018 , pp. 85-97 More about this Journal
Abstract
This study evaluates the performance of the Weather Research and Forecasting (WRF) model in reproducing the present-day (1981~2005) precipitation over Far East Asia and South Korea. The WRF model is configured with 25-km horizontal resolution within the context of the COordinated Regional climate Downscaling Experiment (CORDEX) - East Asia Phase 2. The initial and lateral boundary forcing for the WRF simulation are derived from European Centre for Medium-Range Weather Forecast Interim reanalysis. According to our results, WRF model shows a reasonable performance to reproduce the features of precipitation, such as seasonal climatology, annual and inter-annual variabilities, seasonal march of monsoon rainfall and extreme precipitation. In spite of such model's ability to simulate major features of precipitation, systematic biases are found in the downscaled simulation in some sub-regions and seasons. In particular, the WRF model systematically tends to overestimate (underestimate) precipitation over Far East Asia (South Korea), and relatively large biases are evident during the summer season. In terms of inter-annual variability, WRF shows an overall smaller (larger) standard deviation in the Far East Asia (South Korea) compared to observation. In addition, WRF overestimates the frequency and amount of weak precipitation, but underestimates those of heavy precipitation. Also, the number of wet days, the precipitation intensity above the 95 percentile, and consecutive wet days (consecutive dry days) are overestimated (underestimated) over eastern (western) part of South Korea. The results of this study can be used as reference data when providing information about projections of fine-scale climate change over East Asia.
Keywords
WRF; dynamical downscaling; CORDEX-East Asia Phase 2; Model evaluation; ERA-Interim;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979 - present). J. Hydrometeorol., 4, 1147-1167.   DOI
2 Ahn, J.-B., Y.-W. Choi, S. Jo, and J.-Y. Hong, 2014: Projection of 21st century climate over Korean Peninsula: Temperature and precipitation simulated by WRFV3.4 based on RCP4.5 and 8.5 scenarios. Atmosphere, 24, 541-554, doi:10.14191/Atmos.2014.24.4.541 (in Korean with English abstract).   DOI
3 Ahn, J.-B., and Coauthors, 2016: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pac. J. Atmos. Sci., 52, 223-236, doi:10.1007/s13143-016-0021-0.   DOI
4 Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air.mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693-709, doi:10.1002/qj.49711247308.
5 Cha, D.-H., and D.-K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res., 114, D14108, doi:10.1029/2008JD011176.   DOI
6 Cha, D.-H., and Coauthors, 2016: Future changes in summer precipitation in regional climate simulations over the Korean Peninsula forced by multi-RCP scenarios of HadGEM2-AO. Asia-Pac. J. Atmos. Sci., 52, 139-149, doi:10.1007/s13143-016-0015-y.   DOI
7 Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.   DOI
8 Choi, Y.-W., J.-B. Ahn, M.-S. Suh, D.-H. Cha, S.-Y. Hong, S.-K. Min, S.-C. Park, and H.-S. Kang, 2016: Future changes in drought characteristics over South Korea using multi regional climate models with the standardized precipitation index. Asia-Pac. J. Atmos. Sci., 52, 209-222, doi:10.1007/s13143-016-0020-1.   DOI
9 Choi, Y.-W., and J. B. Ahn, 2017: Impact of Cumulus Parameterization Schemes on the Regional Climate Simulation for the Domain of CORDEX-East Asia Phase 2 Using WRF Model. Atmosphere, 27, 105-118, doi:10.14191/Atmos.2017.27.1.105 (in Korean with English abstract).   DOI
10 Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res., 107, 17-20, doi:10.1029/2001JD001365.
11 DelSole, T., and J. Shukla, 2006: Specification of wintertime North American surface temperature. J. Climate, 19, 2691-2716, doi:10.1175/JCLI3704.1.   DOI
12 Giorgi, F., and W. J. Gutowski, 2015: Regional Dynamical Downscaling and the CORDEX Initiative. Annu. Rev. Env. Resour., 40, 467-490, doi:10.1146/annurev-environ-102014-021217.   DOI
13 Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 38-1-38-4, doi:10.1029/2002GL015311.
14 Hong, J.-Y., and J.-B. Ahn, 2015: Changes of Early Summer Precipitation in the Korean Peninsula and Nearby Regions Based on RCP Simulations. J. Climate, 28, 3557-3578, doi:10.1175/JCLI-D-14-00504.1.   DOI
15 Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.   DOI
16 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.   DOI
17 Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017: Robust intensification of hydroclimatic intensity over East Asia from multi-model ensemble regional projections. Theor. Appl. Climatol., 129, 1241-1254, doi:10.1007/s00704-016-1846-2.   DOI
18 Huang, B., S. Polanski, and U. Cubasch, 2015: Assessment of precipitation climatology in an ensemble of CORDEX-East Asia regional climate simulations. Climate Res., 64, 141-158, doi:10.3354/cr01302.   DOI
19 Huffman, G. J., D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, and E. F. Stocker, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38-55, doi:10.1175/JHM560.1.   DOI
20 Im, E.-S., J.-B. Ahn, and S.-R. Jo, 2015: Regional climate projection over South Korea simulated by the Had-GEM2-AO and WRF model chain under RCP emission scenarios. Climate Res., 63, 249-266, doi:10.3354/cr01292.   DOI
21 IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of The Intergovernmental Panel on Climate Change. Stocker, T. F. et al. Eds., Cambridge University Press.
22 Janjic, Z. I., 1994: The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Wea. Rev., 122, 927-945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.   DOI
23 Jin, C.-S., D.-H. Cha, D.-K. Lee, M.-S. Suh, S.-Y. Hong, H.-S. Kang, and C.-H. Ho, 2016: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Climate Dyn., 47, 765-778, doi:10.1007/s00382-015-2869-6.   DOI
24 Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.   DOI
25 Lee, G., D. H. Cha, and C. Park, 2017b: Improvement of Extreme Summer Precipitation over South Korea in APHRODITE Data. J. Climate Res., 12, 41-51, doi:10.14383/cri.2017.12.1.41 (in Korean with English abstract).   DOI
26 Lee, D., and Coauthors, 2016a: Time of emergence of anthropogenic warming signals in the Northeast Asia assessed from multi-regional climate models. Asia-Pac. J. Atmos. Sci., 52, 129-137, doi:10.1007/s13143-016-0014-z.   DOI
27 Lee, D., C. Park, Y.-H. Kim, and S.-K. Min, 2016b: Evaluation of the COSMO-CLM for East Asia climate simulations: Sensitivity to spectral nudging. J. Clim. Res., 11, 69-85, doi:10.14383/cri.2016.11.1.69 (in Korean with English abstract).   DOI
28 Lee, D., and Coauthors, 2017a: Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study. Climate Dyn., 49, 4121-4139, doi:10.1007/s00382-017-3566-4.   DOI
29 Lee, J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Climate Dyn., 42, 733-747, doi:10.1007/s00382-013-1841-6.   DOI
30 Oh, S.-G., M.-S. Suh, J.-S. Myoung, and D.-H. Cha, 2011: Impact of boundary conditions and cumulus parameterization schemes on regional climate simulation over South-Korea in the CORDEX-East Asia domain using the RegCM4 model. J. Korean Earth Sci. Soc., 32, 373-387, doi:10.5467/JKESS.2011.32.4.373 (in Korean with English abstract).   DOI
31 Oh, S.-G., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res., 119, 2913-2927, doi:10.1002/2013JD020693.
32 Suh, M.-S., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature. Asia.-Pac. J. Atmos. Sci., 52, 151-169, doi:10.1007/s13143-016-0017-9.   DOI
33 Oh, S.-G., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multipleregional climate models based on four RCP scenarios. Part 2: precipitation. Asia.-Pac. J. Atmos. Sci., 52, 171-189, doi:10.1007/s13143-016-0018-8.   DOI
34 Park, J.-H., S.-G. Oh, and M.-S. Suh, 2013: Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. J. Geophys. Res., 118, 1652-1667, doi:10.1002/jgrd.50159.
35 Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl., 110, 25-35.
36 Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183-7192, doi:10.1029/2000JD900719.   DOI
37 Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMSD-11-00094.1.   DOI
38 WCRP, 2014: Report of the first session of the CORDEX Science Advisory Team (SAT), WCRP Report No. 14/2014, 29 pp.
39 von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664-3673, doi:10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.   DOI
40 Wang, B., and LinHo, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15, 386-398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.   DOI
41 Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Amer. Meteor. Soc., 93, 1401-1415, doi:10.1175/BAMS-D-11-00122.1.   DOI
42 Zou, L., T. Zhou, and D. Peng, 2016: Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations. J. Geophys. Res., 121, 1442-1458, doi:10.1002/2015JD023912.