• Title/Summary/Keyword: search algorithm

Search Result 3,898, Processing Time 0.031 seconds

A Design of Model Following Optimal Multivariable BOiler-Turbine H_\infty Control System using Genetic Algorithm (유전 알고리즘을 이용한 모델 추종형 최적 다변수 보일러-터빈 H_\infty제어 시스템의 세계)

  • Hwang, Hyeon-Jun;Kim, Dong-Wan;Park, Jun-Ho;Hwang, Chang-Seon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Multivarialbe Boiler-Turbine H_\infty Control System Genetic Algorithm Weighting Functions $W_1$(s), $W_2$(s), and design parameter $\gamma$ that are given by Glover-Doyle algorithm, to optimally follow the output of reference model. The first method to do this is that the gains of weighting functions $W_1$(s), $W_2$(s), and design parameter are optimized simultaneously by genetic algorithm with the tournament method that can search more diversely, in the search domain which guarantees the robust stability of system. And the second method is that not only by genetic algorithm with the roulette-wheel method that can search more fast, in that search domain. The boiler-turbine H_\infty control system designed by theabove second method has not only the robust stability to a modeling error but also the the better command tracking preformance than those of the H_\infty control system designed by trial-and-error method and the above first method. Also, this boiler-turbine H_\infty control system has the better performance than that of the LQG/LTR contro lsystem. The effectiveness of this boiler-turbineH_\infty control system is verified by computer simulation.

  • PDF

Efficient Hole Searching Algorithm for the Overset Grid System with Relative Body Motion (상대운동이 있는 중첩격자계에 효율적인 Hole Searching Algorithm 개발)

  • Lee, Seon-Hyeong;Chae, Sang-Hyun;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.995-1004
    • /
    • 2011
  • Object X-ray method commonly used for hole search in overset grids requires huge amount of time due to complicated vector calculations to search the cross-points as well as time-consuming hole search algorithm with respect to background grids. Especially, when the grid system is in motion relative to the background, hole points should be searched at every time step, leading to hung computational burden. To cope with this difficulties, this study presents an efficient hole search algorithm mainly designed to reduce hole searching time. To this end, virtual surface with reduced grid points is suggested and logical operators are employed as a classification algorithm instead of complicated vector calculations. In addition, the searching process is further accelerated by designating hole points in a row rather than discriminating hole points with respect to each background grid points. If there exists a relative motion, the present algorithm requires much less time because only the virtual surface needs to be moved at every time step. The hole searching time has been systematically compared for a few selected geometries.

Optimization of wire and wireless network using Global Search Algorithm (전역 탐색 알고리즘을 이용한 유무선망의 최적화)

  • 오정근;변건식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.251-254
    • /
    • 2002
  • In the design of mobile wireless communication system, the location of BTS(Base Transciver Stations), RSC(Base Station Controllers), and MSC(Mobile Switching Center) is one of the most important parameters. Designing wireless communication system, the cost of equipment is need to be made low by combining various, complex parameters. We can solve this problem by combinatorial optimization algorithm, such as Simulated Annealing, Tabu Search, Genetic Algorithm, Random Walk Algorithm that have been extensively used for global optimization. This paper shows the four kind of algorithms which are applied to the location optimization of BTS, BSC, and MSC in designing mobile communication system and then we compare with these algorithms. And also we analyze the experimental results and shows the optimization process of these algorithms. As a the channel of a CDMA system is shared among several users, the receivers face the problem of multiple-access interference (MAI). Also, the multipath scenario leads to intersymbol interference (ISI). Both components are undesired, but unlike the additive noise process, which is usually completely unpredictable, their space-time structure helps to estimate and remove them.

  • PDF

A hybrid identification method on butterfly optimization and differential evolution algorithm

  • Zhou, Hongyuan;Zhang, Guangcai;Wang, Xiaojuan;Ni, Pinghe;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.345-360
    • /
    • 2020
  • Modern swarm intelligence heuristic search methods are widely applied in the field of structural health monitoring due to their advantages of excellent global search capacity, loose requirement of initial guess and ease of computational implementation etc. To this end, a hybrid strategy is proposed based on butterfly optimization algorithm (BOA) and differential evolution (DE) with purpose of effective combination of their merits. In the proposed identification strategy, two improvements including mutation and crossover operations of DE, and dynamic adaptive operators are introduced into original BOA to reduce the risk to be trapped in local optimum and increase global search capability. The performance of the proposed algorithm, hybrid butterfly optimization and differential evolution algorithm (HBODEA) is evaluated by two numerical examples of a simply supported beam and a 37-bar truss structure, as well as an experimental test of 8-story shear-type steel frame structure in the laboratory. Compared with BOA and DE, the numerical and experimental results show that the proposed HBODEA is more robust to detect the reduction of stiffness with limited sensors and contaminated measurements. In addition, the effect of search space, two dynamic operators, population size on identification accuracy and efficiency of the proposed identification strategy are further investigated.

Optimal Path Search using Variable Heuristic base on Fixed Grid (고정 그리드 기반 가변 휴리스틱을 이용한 최적경로탐색)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.137-141
    • /
    • 2005
  • Optimal path search algorithm should consider traffic flows of the roads as well as the distance between a departure and destination, The existing path search algorithms, however, usually don't apply the continuously changed traffic flows. In this paper, we propose a new optimal path search algorithm. the algorithm takes the current flows into consideration in order to reduce the cost to get destination. It decomposes the road networks into Fixed Grid to get variable heuristics. We also carry out the experiments with Dijkstra and $A^*$ algorithm in terms of the execution time, the number of node accesses and the accuracy of path. The results obtained from the experimental tests show the proposed algorithm outperforms the others. The algorithm is highly expected to be useful in a advanced telematics systems.

  • PDF

Analysis of a Distributed Stochastic Search Algorithm for Ship Collision Avoidance (선박 충돌 방지를 위한 분산 확률 탐색 알고리즘의 분석)

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.169-177
    • /
    • 2019
  • It is very important to understand the intention of a target ship to prevent collisions in multiple-ship situations. However, considering the intentions of a large number of ships at the same time is a great burden for the officer who must establish a collision avoidance plan. With a distributed algorithm, a ship can exchange information with a large number of target ships and search for a safe course. In this paper, I have applied a Distributed Stochastic Search Algorithm (DSSA), a distributed algorithm, for ship collision avoidance. A ship chooses the course that offers the greatest cost reduction or keeps its current course according to probability and constraints. DSSA is divided into five types according to the probability and constraints mentioned. In this paper, the five types of DSSA are applied for ship collision avoidance, and the effects on ship collision avoidance are analyzed. In addition, I have investigated which DSSA type is most suitable for collision avoidance. The experimental results show that the DSSA-A and B schemes offered effective ship collision avoidance. This algorithm is expected to be applicable for ship collision avoidance in a distributed system.

Tabu Search Algorithm for Constructing Load-balanced Connected Dominating Sets in Wireless Sensor Networks (무선 센서 네트워크에서 부하 균형 연결 지배 집합을 구성하기 위한 타부서치 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.571-581
    • /
    • 2022
  • Wireless sensor networks use the concept of connected dominating sets that can form virtual backbones for effective routing and broadcasting. In this paper, we propose an optimization algorithm that configures a connected dominating sets in order to balance the load of nodes to increase network lifetime and to perform effective routing. The proposed optimization algorithm in this paper uses the metaheuristic method of tabu search algorithm, and is designed to balance the number of dominatees in each dominator in the constituted linked dominance set. By constructing load-balanced connected dominating sets with the proposed algorithm, it is possible to extend the network lifetime by balancing the load of the dominators. The performance of the proposed tabu search algorithm was evaluated the items related to load balancing on the wireless sensor network, and it was confirmed in the performance evaluation result that the performance was superior to the previously proposed method.

Design of Omok AI using Genetic Algorithm and Game Trees and Their Parallel Processing on the GPU (유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법)

  • Ahn, Il-Jun;Park, In-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.66-75
    • /
    • 2010
  • This paper proposes an efficient method for design and implementation of the artificial intelligence (AI) of 'omok' game on the GPU. The proposed AI is designed on a cooperative structure using min-max game tree and genetic algorithm. Since the evaluation function needs intensive computation but is independently performed on a lot of candidates in the solution space, it is computed on the GPU in a massive parallel way. The implementation on NVIDIA CUDA and the experimental results show that it outperforms significantly over the CPU, in which parallel game tree and genetic algorithm on the GPU runs more than 400 times and 300 times faster than on the CPU. In the proposed cooperative AI, selective search using genetic algorithm is performed subsequently after the full search using game tree to search the solution space more efficiently as well as to avoid the thread overflow. Experimental results show that the proposed algorithm enhances the AI significantly and makes it run within the time limit given by the game's rule.

A Design of Optimal Path Search Algorithm using Information of Orientation (방향성 정보를 이용한 최적 경로 탐색 알고리즘의 설계)

  • Kim Jin-Deog;Lee Hyun-Seop;Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.454-461
    • /
    • 2005
  • Car navigation system which is killer application fuses map management techniques into CPS techniques. Even if the existing navigation systems are designed for the shortest path, they are not able to cope efficiently with the change of the traffic flow and the bottleneck point of road. Therefore, it is necessary to find out shortest path algorithm based on time instead of distance which takes traffic information into consideration. In this paper, we propose a optimal path search algorithm based on the traffic information. More precisely. we introduce the system architecture for finding out optimal paths, and the limitations of the existing shortest path search algorithm are also analyzed. And then, we propose a new algorithm for finding out optimal path to make good use of the orientation of the collected traffic information.

K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies (공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.