• 제목/요약/키워드: sealing fault

검색결과 3건 처리시간 0.018초

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

Main challenges for deep subsea tunnels based on norwegian experience

  • Nilsen, Bjorn
    • 한국터널지하공간학회 논문집
    • /
    • 제17권5호
    • /
    • pp.563-573
    • /
    • 2015
  • For hard rock subsea tunnels the most challenging rock mass conditions are in most cases represented by major faults/weakness zones. Poor stability weakness zones with large water inflow can be particularly problematic. At the pre-construction investigation stage, geological and engineering geological mapping, refraction seismic investigation and core drilling are the most important methods for identifying potentially adverse rock mass conditions. During excavation, continuous engineering geological mapping and probe drilling ahead of the face are carried out, and for the most recent Norwegian subsea tunnel projects, MWD (Measurement While Drilling) has also been used. During excavation, grouting ahead of the tunnel face is carried out whenever required according to the results from probe drilling. Sealing of water inflow by pre-grouting is particularly important before tunnelling into a section of poor rock mass quality. When excavating through weakness zones, a special methodology is normally applied, including spiling bolts, short blast round lengths and installation of reinforced sprayed concrete arches close to the face. The basic aspects of investigation, support and tunnelling for major weakness zones are discussed in this paper and illustrated by cases representing two very challenging projects which were recently completed (Atlantic Ocean tunnel and T-connection), one which is under construction (Ryfast) and one which is planned to be built in the near future (Rogfast).

대형 트럭 자동차의 엔진냉각수 누출, 제동 및 배기시스템 과열에 관련된 화재사례 고찰 (A Study for Fire Examples Involved in Engine Coolant leakage, Brake and Exhaust System Over-Heating of Heavy-Duty Truck Vehicle)

  • 이일권;국창호;함성훈;이영숙;황한섭;유창배;문학훈;정동화;안호철;이정호
    • 한국가스학회지
    • /
    • 제23권4호
    • /
    • pp.40-45
    • /
    • 2019
  • 논문은 대형트럭의 화재에 관련된 고장사례를 고찰한 논문이다. 첫 번째 사례는 6번 실린더 라이너 상단부와 실린더 헤드 사이에 접촉하는 D링부의 변형으로 헤드 가스켓부의 기밀불량 현상으로 냉각수가 누출하여 엔진이 과열되었다. 이 열이 에어크리너 주변 배선에 전달되어 쇼트(short)에 의해 화재가 발생된 것을 확인하였다. 두 번째 사례는 자동차의 리어(Rear) 4축 브레이크 라이닝 과다마모로 브레이크 작동 S 캠(Cam)이 리턴되지 않아 브레이크 라이닝이 드럼과의 계속적인 마찰에 의한 마찰열에 의해 화재가 발생된 것을 확인하였다. 세 번째 사례는 엔진 점검을 위해 캡을 틸팅하였을 때 틸팅 모터의 과부하로 배선의 단락현상이 발생하여 이 불꽃에 의해 화재가 발생한 것을 확인하였다. 따라서, 대형트럭의 화재는 철저한 관리를 하여 화재발생을 최소화하여야 한다.