• Title/Summary/Keyword: sealing fault

Search Result 3, Processing Time 0.019 seconds

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

Main challenges for deep subsea tunnels based on norwegian experience

  • Nilsen, Bjorn
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.563-573
    • /
    • 2015
  • For hard rock subsea tunnels the most challenging rock mass conditions are in most cases represented by major faults/weakness zones. Poor stability weakness zones with large water inflow can be particularly problematic. At the pre-construction investigation stage, geological and engineering geological mapping, refraction seismic investigation and core drilling are the most important methods for identifying potentially adverse rock mass conditions. During excavation, continuous engineering geological mapping and probe drilling ahead of the face are carried out, and for the most recent Norwegian subsea tunnel projects, MWD (Measurement While Drilling) has also been used. During excavation, grouting ahead of the tunnel face is carried out whenever required according to the results from probe drilling. Sealing of water inflow by pre-grouting is particularly important before tunnelling into a section of poor rock mass quality. When excavating through weakness zones, a special methodology is normally applied, including spiling bolts, short blast round lengths and installation of reinforced sprayed concrete arches close to the face. The basic aspects of investigation, support and tunnelling for major weakness zones are discussed in this paper and illustrated by cases representing two very challenging projects which were recently completed (Atlantic Ocean tunnel and T-connection), one which is under construction (Ryfast) and one which is planned to be built in the near future (Rogfast).

A Study for Fire Examples Involved in Engine Coolant leakage, Brake and Exhaust System Over-Heating of Heavy-Duty Truck Vehicle (대형 트럭 자동차의 엔진냉각수 누출, 제동 및 배기시스템 과열에 관련된 화재사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Hwang, Han Sub;You, Chang Bae;Moon, Hak Hoon;Jung, Dong Hwa;Ahn, Ho Cheol;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.40-45
    • /
    • 2019
  • This paper is a purpose to study the failure example for heavy-duty vehicle fire. The first example, the researcher found the engine over-heating phenomenon causing a coolant leakage by the sealing poor of head-gasket because of D-ring part deformation contacting with cylinder liner top-part and cylinder head. He certified a fire breakout by short transferred to surrounding wiring of air-cleaner. The second example, a brake lining by return fault of break operating S cam causing with much wear of a rear 4 wheel brake lining repeatably was worn by friction. In the long run, it became the cause of fire. The third example, the researcher knew the fire cause was came about the short of wire by overload of tilting motor when the driver tilted up the cap to inspect a engine. Therefore, a heavy-duty fire must minimize the fire occurrence by thorough controlling.