• Title/Summary/Keyword: seal film

Search Result 61, Processing Time 0.029 seconds

PROPERTIES OF CALCIUM HYDROXIDE-EUGENOL COMPOUND (수산화칼슘-유지놀 화합물의 물성)

  • Park, Joon-Chol;Kwon, Tae-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.408-415
    • /
    • 1999
  • When a zinc-oxide eugenol type sealer was placed in root canals treated previously with calcium hydroxide, acceleration of its setting and the yellowish discoloration were observed clinically. The purpose of this study was to evaluate the properties of calcium hydroxide-eugenol compound. Some physical properties of calcium hydroxide-eugenol compound were compared with a manufactured zinc-oxide eugenol based root canal sealer, Tubli-seal$^{(R)}$ in terms of water solubility, water sorption, film thickness and microleakage. Solubility and water sorption were determined by the use of the method described in American Dental Association Specification(ADAS) no. 57. Ten samples of each material were prepared into disks 20mm in diameter and 1.5mm in thickness. The samples were immersed in 50ml of distilled water at $37{\pm}1^{\circ}C$ for 7 days. The samples were then removed and placed in a desiccator. The values for solubility and water sorption were calculated using differences between the weights of same sample. Film thickness was determined by the use of the method described in ADAS no. 57 too. A small quantity of mixed cement was placed between two glass plates of which thickness was measured previously. 15Kg loading was applied and total thickness of the glass plates and the cement film was measured. The thickness difference was recorded as the material's film thickness. Microleakage was determined with a dye penetration method. Experimental materials were placed between the dentin surface of bovine tooth and the acrylic rod. These units were immersed in Pelican ink (W-Germany) for three days. Dye-penetrated dentin surfaces of bovine tooth were measured using the NIB Image 1.60 Macintosh program. The results are as follows: 1. Water solubility value of calcium hydroxide-eugenol compound (20.98${\pm}$2.94%) was statistically higher than those of Tubli-seal$^{(R)}$(2.52${\pm}$0.49%)(p<0.05). 2. Water sorption value of calcium hydroxide-eugenol compound (59.72${\pm}$17.75%) was statistically higher than those of Tubli-seal$^{(R)}$(3.15${\pm}$0.76%)(p<0.05). 3. Film thickness value of calcium hydroxide-eugenol compound (0.36${\pm}$0.03mm) was statistically higher than those of Tubli-seal$^{(R)}$(0.12${\pm}$0.1mm)(p<0.05). 4. Dye penetration value after 3 days-immersion of calcium hydroxide-eugenol compound(57.63${\pm}$25.85%) was statistically higher than those of Tubli-seal$^{(R)}$(28.05${\pm}$23.46%)(p<0.05).

  • PDF

on Contact Behaviour Characters of ACGT Seal for High pressure using Finite Element Analysis (고압용 ACGT 시일의 접촉거동 특성에 대한 유한요소 해석)

  • 최동열;김성원;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.350-355
    • /
    • 2001
  • Minimum clearance between the piston seal groove of a piston and cylinder bore to ensure against extrusion of the piston seal and leakage of working fluids is an important design parameter for a seal designer in hydraulic cylinder application. Contact force, critical pressure at which extrusion occurs, leakage rate, fluid film thickness and friction force have been analyzed for some design parameter such as clearance between cylinder wall piston, depth of rectangular groove and pressure of sealed hydraulic fluid. In this paper, we analyze displacement and stress of ACGT seal by finite element analysis to understand Contact Behaviour Characters

  • PDF

Lubrication Performance Analysis of a Spiral Groove Dry Gas Seal for a High-Speed Flying Object (고속비행체용 스파이럴 그루브 드라이 가스 시일의 윤활 성능해석)

  • Lee An Sung;Kim Jun Ho
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • In this study a general Galerkin FE lubrication analysis method is utilized to analyze the complex lubrication performance of a spiral groove seal, which is being designed and developed for a high-speed flying object application operating at a high-speed of over 50,000 rpm. As at the equilibrium seal clearance the axial stiffness of the seal is predicted to have almost such a constant high value of $1.04\times10^8\;N/m$ regardless of a rotating speed, the seal is expected to maintain a stable thickness of lubrication film under a certain external excitation acting. Also, as even at an ultra high-speed of 80,000 rpm the axial damping of the seal is shown to have a rotatively high value of 5,775 N-s/m, the dynamic stability of the seal system at the axial degree of freedom is assured well enough.

Measurement of Damping Coefficients of a Squeeze Film Damper with Piston Ring Seal Ends (피스톤 링 실 끝단을 갖는 스퀴즈 필름 댐퍼의 감쇠 계수 측정)

  • Nam Kyu Kim;Yeongchae Song;Tae Ho Kim;Jeonggi Hong;Kyungdae Kang
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.54-60
    • /
    • 2024
  • This study experimentally identifies the effects of end shape, clearance, total damper length, journal eccentricity ratio, oil supply pressure, and oil flow rate on the damping coefficient of a squeeze film damper (SFD) with piston ring seal ends and a central groove. The SFD is composed of a lubricating fluid flowing between the outer race of a rolling element bearing and cartridge, along with an anti-rotation pin to prevent the rotation of the outer race. The device provides additional viscous damping to a rotating system. Additionally, piston ring seals attached at both ends of the damper increase the damping coefficient of the rotating system by reducing oil leakage. Because these different design conditions affect the damping coefficient of an SFD, we perform experiments including different conditions. Tests show that the damping coefficient increases significantly in the SFD with piston ring seal ends compared with the SFD with open ends. The damping coefficient also increases with increasing total damper length and journal eccentricity ratio, and decreases with increasing clearance. Additionally, in contrast to the trend observed for the SFD with open ends, the damping coefficient for the SFD with piston ring seal ends increases with increasing supply pressure and flow rate as the frequency decreases but shows consistent results as the frequency increases.

An investigation into the thermo-elasto-hydrodynamic effect of notched mechanical seals

  • Meng, Xiangkai;Qiu, Yujie;Ma, Yi;Peng, Xudong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2173-2187
    • /
    • 2022
  • A 3D thermo-elasto-hydrodynamic model is developed to analyze the sealing performance of a notched mechanical seal applied in the reactor coolant pump. In the model, the generalized Reynolds equation, the energy equation coupled with notch heat balance equation, the heat conduction equations, and the deformation equations of the sealing rings are iteratively solved by the finite element method. The film pressure and temperature distribution are obtained, and the deformation of the sealing rings is revealed to study the mechanism of the notched mechanical seals. A parameterized study is conducted to analyze the sealing performance under different operating conditions. As a comparison, the sealing performance of non-notched seals is also studied. The results show that the hydrostatic effect is dominant in the load-carrying capacity of the fluid film due to the radial mechanical and thermal deformations. The notch can cool the fluid film and influence the thermal deformation of seal rings. The sealing performance is sensitive to the pressure difference, ambient temperature, and rotational speed. It is suggested to set the notches on the softer sealing rings to acquire the greater hydrodynamic effect. Compared with the non-notched, the notched end face holds a better lubrication performance, especially under lower rotational speed.

A Study on the Friction and Wear Characteristics of Contact Sealing Units for a Small Hydro-power Turbine Under Various Rubbing Conditions (마찰접촉조건에 따른 소수력 수차용 밀봉장치의 마찰.마멸특성 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.314-319
    • /
    • 2006
  • In this paper, the friction and wear characteristics of contact type sealing unit far a water turbine have been presented. The sealing unit for a small hydropower generation is to stop a leakage of circulating water from an outside of an impeller to an inside of a rolling bearing. The friction heating between a seal ring and a seal seat may radically increase a surface temperature in which increase a power loss and wear on the rubbing surface. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Victors hardness and the hardness of silicone carbide of SiC is 714.1 in Victors hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces are a dry friction, a water film friction and a mixed friction that is contaminated by a dust, silt, and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat in primary sealing unit. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components.

A Lubrication Design Optimization of Mechanical Face Seal (미케니컬 페이스 실의 유활 최적설계)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2989-2994
    • /
    • 2000
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface of a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance between mating seal faces gets smaller. But the very small clearance may result in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, ant it present a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby is optimization is one of the main design consideration. in this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries, to give lubrication performances, such as opening force, restoring moment, leakage, and axial and angular stiffness coefficients. Then, to improve the seal performance an optimization is performed, considering various design variables simultaneously. For the tested case the optimization ha successfully resulted in the optimal design values of outer and inner seal radii, coning, seal clearance, and balance radius while satisfying all the operation subjected constraints and design variable side-constraints, and improvements of axial and angular stiffness coefficients by 16.8% and 2.4% respectively and reduction of leakage by 38.4% have been achieved.

Experimental Study on the Friction and Wear Characteristics of Contact Sealing Unit for a Water Turbine (수차용 봉수장치의 마찰.마모특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Sihn, Ihn-Cheol;Lim, Kwang-Hyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.515-518
    • /
    • 2006
  • This paper presents the friction and wear characteristics of contact type sealing unit for a water turbine of a small hydro-power generation, which Is to stop a leakage of a circulating water from a outside of an impeller to an inside of a rolling bearing. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Vickers hardness and the hardness of silicone carbide of SiC is 714.1 in Vickers hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces aye a dry friction a water film friction and a mixed friction that is contaminated by a dust, silt and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components

  • PDF

Storage and Quality Characteristics of Vacuum-Packaged Fresh Meat with Oxygen Barrier Second-Heat-Seal Film or Shrink Film (산소차단성 융착필름과 수축필름에 진공포장된 생육의 품질 특성과 저장성 비교)

  • 이근택;윤찬석
    • Food Science of Animal Resources
    • /
    • v.21 no.3
    • /
    • pp.235-245
    • /
    • 2001
  • This study was conducted to evaluate the usefulness of Second-Heat-Seal film(SHS) as an alternative material to PVDC/EVA shrink film(VSP) being currently used by domestic meat packer for vacuum-packaging of fresh meat. The samples from pork loin and beef striploin and round were stored at 2$^{circ}C$ for 5 weeks and measured for the changes of microbial counts, color, pH, volatile basic nitrogen(VBN), purge loss and sensory parameters. The pork loins packed with SHS showed higher spermine contents during the whole storage period at 2$^{circ}C$, and lower counts in total microbes and lactic acid bacteria after 28 days storage at 2$^{circ}C$ than those packed with SHS tended to be lower than those packed with VSP over the storage time. Nevertheless, no significant differences were observed between two packaging treatments in the other quality parameters evaluated. It is therefore concluded that SHS film might have a possibility to substitute for VSP film for vacuum-packaging of fresh meat at least from a materials point of view.

  • PDF

Effect of Sliding Speed on Wear Characteristics of Polyurethane Seal (미끄럼 속도 변화에 따른 폴리우레탄 씰의 마모 특성)

  • Kim, Hansol;Jeon, Hong Gyu;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • Hydraulic reciprocating seal has been widely used to prevent fluid leakage in hydraulic systems. Also, hydraulic reciprocating seal plays a significant role to provide lubricant film at contacting interface to minimize tribological problems due to sliding with counter material. To predict lifetime of hydraulic reciprocating seal, quantitative understanding of wear characteristics with respect to operating conditions such as normal force and sliding speed is needed. In this work, effect of sliding speed on wear of polyurethane (PU) hydraulic reciprocating seal were experimentally investigated using a pin-on-disk tribo-tester. The wear characteristics of PU specimens were quantitatively determined by comparing the confocal microscope data before and after test. It was found that the wear rate of PU specimens decreased from $4.9{\times}10^{-11}mm^3$ to $1.1{\times}10^{-11}mm^3/Nm$ as sliding speed increased from 120 mm/s to 940 mm/s. Also, it was observed that the friction decreased slightly as the sliding speed increased. Improvement of lubrication state with increasing sliding speed was likely to be responsible for this enhanced friction and wear characteristics. This result also suggests that decrease in sliding distance between PU elastomer and counter materials at lower sliding speed is preferred. Furthermore, the quantitative assessment of wear characteristics of PU specimen may be useful in prediction of lifetime of PU hydraulic reciprocating seal if the allowed degree of wear for failure of the seal is provided.