• 제목/요약/키워드: seahorse

검색결과 25건 처리시간 0.016초

Parturition and Morphological Development of Larvae and Juvenile in Hippocampus kuda from Korea

  • Lee, Gi-Seok;Lee, Sung-Hun;Lee, Jin;Park, Jea-Min;Han, Kyeong-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제22권4호
    • /
    • pp.361-367
    • /
    • 2018
  • The newborn, Hippocampus kuda larvae were 6.97-8.81, standard length (SL) mm (mean 7.89 mm) and mouth and anuse were open. Dorsal fin rays 15-18 and pectoral fin-rays were counted 8 and had 10-11+21 myotomes, body's bony plate ring being developed strongly in the central axis of myotomes part. 4 days after bearing, the SL was 7.02-9.47 mm (mean 8.24 mm) and nostrils began to open. 12 days after bearing, larvae attained to 8.91-11.2 SL mm (mean 10.0 mm). From this time, their unique predation habit appeared. 21 days bearing, larvae attained to 12.1-14.8 SL mm (mean 13.4 mm) the and thorn of back was enlarged among the plate formed around ring. 41 days bearing, seahorses attained to 17.1-17.8 SL mm (mean 17.4 mm) and the number of body's bony plate ring of the top of rings trunk was 11 and on the tail of them was 33-36, similar to figure of adult.

실험실 사육에 의한 한국산 실고기과(Syngnathidae) 2종, 풀해마(Urocampus nanus)와 실고기(Syngnathus schlegeli)의 초기생활사 비교 (Comparative Early Life History of Two Pipefish, Urocampus nanus and Syngnathus schlegeli (Syngnathidae) in Laboratory Culture from Korea)

  • 이재환;김진구
    • 한국수산과학회지
    • /
    • 제53권1호
    • /
    • pp.83-89
    • /
    • 2020
  • This study provides a detailed morphological description of larvae obtained from Urocampus nanus and Syngnathus schlegeli male brood fish over 20 days of culture in the laboratory. In both species, mating takes place when several males each spread their brood pouch like a wing to attract a female's attention. When the female begins to swim upward, the males follow her and receive her eggs in their brood pouches. Newborn larvae of U. nanus and S. schlegeli had already completed formation of dorsal and caudal fin rays, but not of pectoral fin rays. Pectoral fin rays were completely formed 15 days after release in S. schlegeli and 20 days after release in U. nanus. The ratio of caudal fin length to standard length increased until 8 days and decreased thereafter in S. schlegeli, while in U. nanus this ratio declined continuously after hatching. The larvae of the two species were very similar in external morphology, but well distinguished by the number of dorsal fin rays (15-16 in U. nanus vs. 39-43 in S. schlegeli), the presence of a membrane under the tail (absent in U. nanus vs. present in S. schlegeli), and the presence of melanophores in the dorsal fin (present in U. nanus vs. absent in S. schlegeli). Based on this study, U. nanus appears to be evolutionally more similar to pipefish than to seahorse.

Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: a functional comparison of different extraction solvents

  • Huang, Yun;Kwan, Kenneth Kin Leung;Leung, Ka Wing;Yao, Ping;Wang, Huaiyou;Dong, Tina Tingxia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.517-526
    • /
    • 2019
  • Background: The root of Panax ginseng, a member of Araliaceae family, has been used as herbal medicine and functional food in Asia for thousands of years. According to Traditional Chinese medicine, ginseng is the most widely used "Qi-invigorating" herbs, which provides tonic and preventive effects by resisting oxidative stress, influencing energy metabolism, and improving mitochondrial function. Very few reports have systematically measured cell mitochondrial bioenergetics after ginseng treatment. Methods: Here, H9C2 cell line, a rat cardiomyoblast, was treated with ginseng extracts having extracted using solvents of different polarity, i.e., water, 50% ethanol, and 90% ethanol, and subsequently, the oxygen consumption rate in healthy and tert-butyl hydroperoxideetreated live cultures was determined by Seahorse extracellular flux analyzer. Results: The 90% ethanol extracts of ginseng possessed the strongest antioxidative and tonic activities to mitochondrial respiration and therefore provided the best protective effects to H9C2 cardiomyocytes. By increasing the spare respiratory capacity of stressed H9C2 cells up to three-folds of that of healthy cells, the 90% ethanol extracts of ginseng greatly improved the tolerance of myocardial cells to oxidative damage. Conclusion: These results demonstrated that the low polarity extracts of ginseng could be the best extract, as compared with others, in regulating the oxygen consumption rate of cultured cardiomyocytes during mitochondrial respiration.

소안도에 서식하는 해마(Hippocampus haema) (Pisces: Syngnathidae)의 서식지 특성 및 산란생태 (Habitat Characteristics and Spawning Ecology of Hippocampus haema (Pisces: Syngnathidae) Inhabiting the Soando (Island))

  • 조현근;안중관;김형수
    • 한국환경생태학회지
    • /
    • 제36권6호
    • /
    • pp.615-626
    • /
    • 2022
  • 본 연구는 2015년 5월부터 2016년 12월까지 전라남도 완도군 소안도 일대에서 해마의 서식지 특성 및 산란생태를 밝히기 위해 조사하였다. 해마가 서식하는 조사지점은 주로 거머리말 개체군의 초지가 형성되었다. 거머리말 생육밀도와 생물량(Mean±SE)은 각각 춘계(5월)에 136±14.4shoots/m2, 489.8g DW/m2로 가장 높았고, 생육밀도는 추계(10월)에 93±7.0shoots/m2, 생물량은 동계(2월)에 122.3g DW/m2로 가장 낮았다. 본 연구 기간 동안 다이빙과 족대 조사를 통해 293개체의 해마가 확인되었고 해마의 전장은 10.1~87.0mm의 범위였다. 수정란 또는 자어를 보육중인 수컷 개체는 2015년, 2016년 모두 5월부터 출현하여 10월까지 채집되었고, 미성어의 출현은 2015년에는 7월, 2016년에는 6월부터 확인되었다. 산란기 특성을 종합적으로 분석한 결과, 해마의 산란시기는 4~10월까지로 추정되었다. 수컷의 보육낭에서 확인된 수정난수 또는 자어수는 38.3±14.8(20~76)개였고 암컷에서 확인된 포란수는 47.2±8.6(31~59)개였다. 해마의 암컷과 수컷의 성비는 1:1.7로서 수컷의 출현비율이 우세하였다.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.