• Title/Summary/Keyword: sea surface winds

Search Result 130, Processing Time 0.023 seconds

Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea

  • Kwon, Kyungman;Choi, Byoung-Ju;Kim, Kwang Young;Kim, Keunyong
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.315-326
    • /
    • 2019
  • Northeastward drifts of massive Sargassum patches were observed in the East China Sea (ECS) and Yellow Sea (YS) by the Geostationary Ocean Color Imager (GOCI) in May 2017. Coverage of the brown macroalgae patches was the largest ever recorded in the ECS and YS. Three-dimensional circulation modeling and Lagrangian particle tracking simulations were conducted to reproduce drifting trajectories of the macroalgae patches. The trajectories of the macroalgae patches were controlled by winds as well as surface currents. A windage (leeway) factor of 1% was chosen based on sensitivity simulations. Southerly winds in May 2017 contributed to farther northward intrusion of the brown macroalgae into the YS. Although satellite observation and numerical modeling have their own limitations and associated uncertainties, the two methods can be combined to find the best estimate of Sargassum patch trajectories. When satellites were unable to capture all patches because of clouds and sea fog in the ECS and YS, the Lagrangian particle tracking model helped to track and restore the missing patches in satellite images. This study suggests that satellite monitoring and numerical modeling are complementary to ensure accurate tracking of macroalgae patches in the ECS and YS.

Evaluation of Climatological Mean Surface Winds over Korean Waters Simulated by CORDEX-EA Regional Climate Models (CORDEX-EA 지역기후모형이 모사한 한반도 주변해 기후평균 표층 바람 평가)

  • Choi, Wonkeun;Shin, Ho-Jeong;Jang, Chan Joo
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.115-129
    • /
    • 2019
  • Surface winds over the ocean influence not only the climate change through air-sea interactions but the coastal erosion through the changes in wave height and direction. Thus, demands on a reliable projection of future changes in surface winds have been increasing in various fields. For the future projections, climate models have been widely used and, as a priori, their simulations of surface wind are required to be evaluated. In this study, we evaluate the climatological mean surface winds over the Korean Waters simulated by five regional climate models participating in Coordinated Regional Climate Downscaling Experiment (CORDEX) for East Asia (EA), an international regional climate model inter-comparison project. Compared with the ERA-interim reanalysis data, the CORDEX-EA models, except for HadGEM3-RA, produce stronger wind both in summer and winter. The HadGEM3-RA underestimates the wind speed and inadequately simulate the spatial distribution especially in summer. This summer wind error appears to be coincident with mean sea-level pressure in the North Pacific. For wind direction, all of the CORDEX-EA models simulate the well-known seasonal reversal of surface wind similar to the ERA-interim. Our results suggest that especially in summer, large-scale atmospheric circulation, downscaled by regional models with spectral nudging, significantly affect the regional surface wind on its pattern and strength.

Study on Establishment of a Wind Map of the Korean Peninsula (I. Establishment of a Synoptic Wind Map Using Remote-Sensing Data) (한반도 바람지도 구축에 관한 연구 (I. 원격탐사자료에 의한 종관 바람지도 구축))

  • Kim Hyungoo;Choi Jaeou;Lee Hwawoon;Jung Woosik
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.44-53
    • /
    • 2005
  • To understand general status of the national wind environment and to distinguish potential areas to be developed as a largescale wind farm, a synoptic wind map of the Korean Peninsula is established by processing remote sensing data of the satellite, NASA QuikSCAT which Is deployed for the SeaWinds Project since 1999. According to the validation results obtained by comparing with the measurement data of marine buoys of KMA(Korea Meteorological Administration), the cross-correlation factor Is greatly Improved up to 0.87 by blending the sea-surface dat3 of QuikSCAT with NCEP/NCAR CDAS data. It is found from the established synoptic wind map that the wind speed in winter is prominent temporally and the South Sea shows high energy density up to the wind class 6 spatially. The reason is deduced that the northwest winds through the yellow Sea and the northeast winds through the East Sea derived by the low-pressure developed in Japan are accelerated passing through the Korea Channel and formed high wind energy region in the South Sea; the same trends are confirmed by the statistical analysis of meteorological observation data of KMA.

  • PDF

Atmospheric Pollutant Concentrations under the Influences of Internal Gravity Wave and Sea-Land Breeze Circulations in the Mountainous Coastal Regions (산악연안지역에서 내부중력파와 해륙풍순환 영향하의 대기오염농도)

  • Hyo Choi;Joon Choi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.18-33
    • /
    • 1995
  • Under the synoptic scale strong westerly winds flowing over the large steep mountains in the eastern coastal region, the strong downslope wind storms such as internal gravity waves should be generated in the lee-side of mountain. Int he daytime as sea breeze circulation induced by meso-scale thermal forcing from sea toward inland confines to the offshore side of coastal sites due to the eastward internal gravity waves. Thus, surface winds near the coastal seas were relatively weaker than those in the open sea or the inland sites. Evidently, two different kinds of atmospheric circulations such as an internal gravity wave circulation with westerly wind and a sea breeze circulation with both easterly wind near the sea surface and westerly in the upper level were apparently produced. Under this situation the atmospheric pollutants at Kangnung city should be trapped by two different circulations in the opposite directions and resulted in the high concentrations of Total Suspended Particles (TSP) and ozone (O3). At night a meso-scale land breeze from land toward the more intensification of westerly winds in the coastal regions. The concentrations of TSP controled by the strong surface winds blowing from the mountain side toward the coastal sea were relatively higher at night than those in the daytime case and the concentrations of O3 due to the downward transport of ozone from the upper atmosphere toward the surface were also much higher at night than during the day. Consequently, the atmospheric pollutant concentrations in the mountainous coastal region under the downslope wind storms were higher than those after and before the occurrences of wind storms.

  • PDF

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region (한반도 연안해역에서 인공위성 산란계(MetOp-A/B ASCAT) 해상풍 검증)

  • Kwak, Byeong-Dae;Park, Kyung-Ae;Woo, Hye-Jin;Kim, Hee-Young;Hong, Sung-Eun;Sohn, Eun-Ha
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.536-555
    • /
    • 2021
  • Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.

Surface Waves and Bottom Shear Stresses in the Yellow Sea (黃海에서의 波浪과 海底剪斷應力)

  • Kang, See Whan;Cho, Jei Kook
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.118-124
    • /
    • 1984
  • The amplitudes and periods of wind-driven, surface gravity waves in the Yellow Sea, were calculated using the SMB hindcasting method. Bottom orbital velocities and bottom shear stresses were then calculated on the basis of linear wave theory and Kajiura's (1968) turbulent oscillating boundary layer analyses. These calculations were made for northwesterly and southwesterly winds with a steady speed of 40 knots. The numerical results show that the wide offshore areas along the western Korean Peninsula are persistently subjected to the strong wave action and bottom shear stresses produced by the prevailing winds.

  • PDF

Influences of the Sea Surface Wind on Current and Thermal Structures in the Southwestern Part of the East Sea of Korea (동해 남서해역의 해류 및 열구조에 미치는 해상풍의 영향)

  • NA Jung-Yul;PAENG Dong-Guk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.1
    • /
    • pp.15-28
    • /
    • 1992
  • Temporal variations of the path of the East Korea Warm Current(EKWC) which flows northward along the east coast of Korea were analysed to investigate whether the EKWC directly influences the existence of the so-called Warm Core in the Ulreung basin. From the 13 years(1975-1987) data of the Fisheries Research and Development Agency(FRDA), the $10^{\circ}C$ isotherm at the 100m depth and the depth of $2^{\circ}C$ isotherm and the temperature field at the 200m depth were used for identification of the path and the central position of the Warm Core. Sea surface winds computed from the surface pressure charts gave the monthly-averaged wind stress curl over the East Sea which was used for determination of the Sverdrup transport. And the mass transport stream functions were computed by use of the Sverdrup balance. The variations of the path show that the EKWC does not always have a fixed path and fluctuates with time. And the existence of the Warm Core is independent upon the presence of the EKWC even when the EKWC doesn't flow northward along the east coast of Korea. In view of the mass transport stream functions, the influences of the sea surface winds on the branching of the Tsushima Warm Currents and the presence of the EKWC were investigated. The presence of the EKWC may be hindered by the southward flow driven by the sea surface winds when the Tsushima currents are rather weak. A very weak correlation exists between the north-south component of the Sverdrup transport and the position of the Warm Core. However, a small but significant part of the southward transport across the latitudinal line of $38^{\circ}N$ indicates that cold water from the northern part of the East Sea may be driven and be forced to flow beneath the permanent thermocline in such a way that the thermal structure of the Warm Core and its position might be changed.

  • PDF

Variability of the Coastal Current off Uljin in Summer 2006 (2006년 하계 울진 연안 해류의 변동성)

  • Lee, Jae Chul;Chang, Kyung-Il
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.165-177
    • /
    • 2014
  • In an effort to investigate the structure and variability of the coastal current in the East Sea, a moored ADCP observation was conducted off Uljin from late May to mid-October 2006. Owing to the transition of season from summer to autumn, the features of the current and wind can be divided into two parts. Until mid-August (Part-I), a southward flow is dominant at all depths with a mean alongshore velocity of 4.2~8.9 cm/s but northward winds are not strong enough to reverse the near-surface current. During Part-II, a strong northward current occurs frequently in the upper layer but winds are predominantly southward including two typhoons that have deep-reaching influence. Profile of mean velocity has three layers with a northward velocity embedded at 12~28 m depth. The near-surface current of Part-II significantly coheres with winds at 4-8 day periods with a phase lag of about 12 hours. The modal structure of the current obtained by EOF analysis is: (1) Mode-1, having 83.6% of total variance, represents the current in the same direction at all depths corresponding to the southward North Korean Cold Current (NKCC). (2) Mode-2 (11.7%) reveals a two-layer structure that can be explained by the northward East Korean Warm Current (EKWC) in the upper layer and NKCC in the lower. (3) Mode-3 (2.6%) has three layers, in which the EKWC is reversed near the surface by opposing winds. This mode is particularly similar to the mean velocity profile of Part-II.

Ocean wave forecasting and hindercasting method to support for navigational safety of ship (선박의 항행안전지원을 위한 파낭추산에 관한 연구)

  • 신승호;교본전명
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.147-156
    • /
    • 2003
  • In order to improve navigational safety of ships, on ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface winds first and then carried out ocean wave hindercasting simulations according to the routes of the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed low pressure system in Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, was period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

  • PDF

The Annual Variation of Surface Circulation in the South China Sea

  • Jeon, Dongchull
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.13-15
    • /
    • 1995
  • The horizontal and vertical circulations are considered in the South China Sea, based on the 80 years' winds (COADS), 10 years' XBTs (NODC), and about 10 years' sea-level data at Kaoshiung, Taiwan and Singapore. The South China is largest marginal sea in the western North Pacific, which is predominantly governed by Southeast Asian Monsoons. (omitted)

  • PDF