Browse > Article
http://dx.doi.org/10.4490/algae.2019.34.12.11

Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea  

Kwon, Kyungman (Research Institute for Basic Science, Chonnam National University)
Choi, Byoung-Ju (Department of Oceanography, College of Natural Science, Chonnam National University)
Kim, Kwang Young (Department of Oceanography, College of Natural Science, Chonnam National University)
Kim, Keunyong (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
Publication Information
ALGAE / v.34, no.4, 2019 , pp. 315-326 More about this Journal
Abstract
Northeastward drifts of massive Sargassum patches were observed in the East China Sea (ECS) and Yellow Sea (YS) by the Geostationary Ocean Color Imager (GOCI) in May 2017. Coverage of the brown macroalgae patches was the largest ever recorded in the ECS and YS. Three-dimensional circulation modeling and Lagrangian particle tracking simulations were conducted to reproduce drifting trajectories of the macroalgae patches. The trajectories of the macroalgae patches were controlled by winds as well as surface currents. A windage (leeway) factor of 1% was chosen based on sensitivity simulations. Southerly winds in May 2017 contributed to farther northward intrusion of the brown macroalgae into the YS. Although satellite observation and numerical modeling have their own limitations and associated uncertainties, the two methods can be combined to find the best estimate of Sargassum patch trajectories. When satellites were unable to capture all patches because of clouds and sea fog in the ECS and YS, the Lagrangian particle tracking model helped to track and restore the missing patches in satellite images. This study suggests that satellite monitoring and numerical modeling are complementary to ensure accurate tracking of macroalgae patches in the ECS and YS.
Keywords
currents; East China Sea; leeway; particle tracking model; Sargassum horneri; winds; Yellow Sea;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Xing, Q., An, D., Zheng, X., Wei, Z., Wang, X., Li, L., Tian, L. & Chen, J. 2019. Monitoring seaweed aquaculture in the Yellow Sea with multiple sensors for managing the disaster of macroalgal blooms. Remote Sens. Environ. 231:111279.   DOI
2 Yoshida, T. 1963. Studies on the distribution and drift of the floating seaweed. Bull. Tohoku Reg. Fish. Res. Lab. 23:141-186 (in Japanese with English abstract).
3 Zhang, J., Shi, J., Gao, S., Huo, Y., Cui, J., Shen, H., Liu, G. & He, P. 2019. Annual patterns of macroalgal blooms in the Yellow Sea during 2007-2017. PLoS ONE 14:e0210460.   DOI
4 Zhang, W.-N., Huang, H.-M., Wang, Y.-G., Chen, D.-K. & Zhang, L. 2018. Mechanistic drifting forecast model for a small semi-submersible drifter under tide-wind-wave conditions. China Ocean Eng. 32:99-109.   DOI
5 Breivik, O., Allen, A. A., Maisondieu, C. & Roth, J. C. 2011. Wind-induced drift of objects at sea: the leeway field method. Appl. Ocean Res. 33:100-109.   DOI
6 Brooks, M. T., Coles, V. J., Hood, R. R. & Gower, J. F. R. 2018. Factors controlling the seasonal distribution of pelagic Sargassum. Mar. Ecol. Prog. Ser. 599:1-18.   DOI
7 Chassignet, E. P., Smith, L. T., Halliwell, G. R. & Bleck, R. 2003. North Atlantic simulation with the Hybrid Coordinate Ocean Model (HYCOM): impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr. 33:2504-2526.   DOI
8 Cho, S.-H., Myoung, J.-G., Kim, J.-M. & Lee, J. H. 2001. Fish fauna associated with drifting seaweed in the coastal area of Tongyeong, Korea. Trans. Am. Fish. Soc. 130:1190-1202.   DOI
9 Choi, J.-G., Jo, Y.-H., Moon, I.-J., Park, J., Kim, D.-W. & Lippmann, T. C. 2018. Physical forces determine the annual bloom intensity of the giant jellyfish Nemopilema nomurai off the coast of Korea. Reg. Stud. Mar. Sci. 24:55-65.   DOI
10 Mizuno, S., Ajisaka, T., Lahbib, S., Kokubu, Y., Alabsi, M. N. & Komatsu, T. 2014. Spatial distributions of floating seaweeds in the East China Sea from late winter to early spring. J. Appl. Phycol. 26:1159-1167.   DOI
11 Monismith, S. G. & Fong, D. A. 2004. A note on the potential transport of scalars and organisms by surface waves. Limnol. Oceanogr. 49:1214-1217.   DOI
12 Qi, L., Hu, C., Wang, M., Shang, S. & Wilson, C. 2017. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 44:11501-11509.   DOI
13 North, E. W., Hood, R. R., Chao, S.-Y. & Sanford, L. P. 2006. Using a random displacement model to simulate turbulent particle motion in a baroclinic frontal zone: a new implementation scheme and model performance tests. J. Mar. Syst. 60:365-380.   DOI
14 North, E. W., Schlag, Z., Hood, R. R., Li, M., Zhong, L., Gross, T. & Kennedy, V. S. 2008. Vertical swimming behavior influences dispersal of simulated oyster larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake Bay. Mar. Ecol. Prog. Ser. 359:99-115.   DOI
15 Putman, N. F., Goni, G. J., Gramer, L. J., Hu, C., Johns, E. M., Trinanes, J. & Wang, M. 2018. Simulating transport pathways of pelagic Sargassum from the Equatorial Atlantic into the Caribbean Sea. Prog. Oceanogr. 165:205-214.   DOI
16 Ryu, J.-H., Han, H.-J., Cho, S., Park, Y.-J. & Ahn, Y.-H. 2012. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean Sci. J. 47:223-233.   DOI
17 Shchepetkin, A. & McWilliams, J. C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modell. 9:347-404.   DOI
18 Durski, S. M., Glenn, S. M. & Haidvogel, D. B. 2004. Vertical mixing schemes in the coastal ocean: comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization. J. Geophys. Res. 109:C01015.   DOI
19 Clarkin, E., Maggs, C. A., Allcock, A. L. & Johnson, M. P. 2012. Environment, not characteristics of individual algal rafts, affects composition of rafting invertebrate assemblages in Irish coastal waters. Mar. Ecol. Prog. Ser. 470:31-40.   DOI
20 Dippner, J. W. 2005. Mathematical modelling of the transport of pollution in the water. In Filar, J. A. (Ed.) Encyclopedia of Life Support System (EOLSS) developed under the auspices of the UNESCO. EOLSS Publisher, Oxford.
21 Egbert, G. D. & Erofeeva, S. Y. 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19:183-204.   DOI
22 Evensen, G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99:10143-10162.   DOI
23 Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A. & Edson, J. B. 2003. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16:571-591.   DOI
24 Filippi, J.-B., Komatsu, T. & Tanaka, K. 2010. Simulation of drifting seaweeds in East China Sea. Ecol. Inform. 5:67-72.   DOI
25 Haidvogel, D. B., Arango, H. G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P. & Shchepetkin, A. F. 2000. Model evaluation experiments in the North Atlantic Basin:simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans 32:239-281.   DOI
26 Komatsu, T., Tatsukawa, K., Filippi, J. B., Sagawa, T., Matsunaga, D., Mikami, A., Ishida, K., Ajisaka, T., Tanaka, K., Aoki, M., Wang, W. D., Liu, H. F., Zhang, S. D., Zhou, M. D. & Sugimoto, T. 2007. Distribution of drifting seaweeds in eastern East China Sea. J. Mar. Syst. 67:245-252.   DOI
27 Hu, C., Feng, L., Hardy, R. F. & Hochberg, E. J. 2015. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae. Remote Sens. Environ. 167:229-246.   DOI
28 Johnson, D. L. & Richardson, P. L. 1977. On the wind-induced sinking of Sargassum. J. Exp. Mar. Biol. Ecol. 28:255-267.   DOI
29 Kim, K., Shin, J., Kim, K. Y. & Ryu, J.-H. 2019. Long-term trend of green and golden tides in the eastern Yellow Sea. J. Coast. Res. 90:317-323.   DOI
30 Kim, K., Shin, J. & Ryu, J.-H. 2018. Application of multi-satellite sensors to estimate the green-tide area. Korean J. Remote Sens. 34:339-349 (in Korean with English abstract).   DOI
31 Kwon, K., Choi, B.-J. & Lee, S.-H. 2018. Assimilation of different SST datasets to a coastal ocean modeling system in the Yellow and East China Sea. J. Coast. Res. 85:1041-1045.   DOI
32 Kwon, K. M., Choi, B.-J., Lee, S.-H., Kim, Y. H., Seo, G.-H. & Cho, Y.-K. 2016. Effect of model error representation in the Yellow and East China Sea modeling system based on the ensemble Kalman filter. Ocean Dyn. 66:263-283.   DOI
33 Thiel, M. 2003. Rafting of benthic macrofauna: important factors determining the temporal succession of the assemblage on detached macroalgae. Hydrobiologia 503:49-57.   DOI
34 Lee, J. H., Pang, I.-C., Moon, I.-J. & Ryu, J.-H. 2011. On physical factors that controlled the massive green tide occurrence along the southern coast of the Shandong Peninsula in 2008: a numerical study using a particle-tracking experiment. J. Geophys. Res. 116:C12036.   DOI
35 Mellor, G. L. & Yamada, T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20:851-875.   DOI
36 Ingolfsson, A. 1995. Floating clumps of seaweed around Iceland:natural microcosms and a means of dispersal for shore fauna. Mar. Biol. 122:13-21.   DOI
37 Son, Y. B., Choi, B.-J., Kim, Y. H. & Park, Y.-G. 2015. Tracing floating green algae blooms in the Yellow Sea and the East China Sea using GOCI satellite data and Lagrangian transport simulations. Remote Sens. Environ. 156:21-33.   DOI
38 Song, Y. & Haidvogel, D. 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys. 115:228-244.   DOI
39 Wang, M., Hu, C., Barnes, B. B., Mitchum, G., Lapointe, B. & Montoya, J. P. 2019. The great Atlantic Sargassum belt. Science 365:83-87.   DOI