• Title/Summary/Keyword: sea Ice

Search Result 352, Processing Time 0.026 seconds

Projected Sea-ice Changes in the Arctic Sea under Global Warming (기후변화에 따른 북극해 빙해역 변화)

  • Kwon, Mi-Ok;Jang, Chan-Joo;Lee, Ho-Jin
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.379-386
    • /
    • 2010
  • This study examines changes in the Arctic sea ice associated with global warming by analyzing the climate coupled general circulation models (CGCMs) provided in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. We selected nine models for better performance under 20th century climate conditions based on two different criteria, and then estimated the changes in sea ice extent under global warming conditions. Under projected 21st century climate conditions, all models, with the exception of the GISS-AOM model, project a reduction in sea ice extent in all seasons. The mean reduction in summer (-63%) is almost four times larger than that in winter (-16%), resulting an enhancement of seasonal variations in sea ice extent. The difference between the models, however, becomes larger under the 21st century climate conditions than under 20th century conditions, thus limiting the reliability of sea-ice projections derived from the current CGCMs.

Development of Model Test Methodology of Pack Ice in Square Type Ice Tank (사각 빙해수조에서의 Pack Ice 모형시험 기법 개발)

  • Cho, Seong-Rak;Yoo, Chang-Soo;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.390-395
    • /
    • 2011
  • The main purpose of ice model basin is to assess and evaluate the performance of the Arctic ships and offshore structures because the full-scale tests in ice covered sea are usually very expensive and difficult. There are various ice conditions, such as level ice, brash ice, pack ice and ice ridge, in the real sea. To estimate their capacities in ice tank accurately, an appropriate model ice sheet and prepared ice conditions copied from actual sea ice conditions are needed. Pack ice is a floating ice that has been driven together into a single mass and a mixture of ice fragments of varying size and age that are squeezed together and cover the sea surface with little or no open water. So Ice-class vessels and Icebreaker are usually operated in pack ice conditions for the long time of her voyage. The most ice model tests include the pack ice test with the change of pack ice concentration. In this paper, the effect of pack ice size and channel breadth in pack ice model test is conducted and analyzed. Also we presented some techniques for the calculation of pack ice concentration in the model test. Finally, we developed a new model test methodology of pack ice condition in square type ice tank.

EFFECTS OF ATMOSPHERIC WATER AND SURFACE WIND ON PASSIVE MICROWAVE RETRIEVALS OF SEA ICE CONCENTRATION: A SIMULATION STUDY

  • Shin, Dong-Bin;Chiu, Long S.;Clemente-Colon, Pablo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.892-895
    • /
    • 2006
  • The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water and water vapor and surface wind on surface emissivity on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor’s field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric and surface effects tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. In particular, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations over marginal ice zones.

  • PDF

Evaluation of Applicability of Sea Ice Monitoring Using Random Forest Model Based on GOCI-II Images: A Study of Liaodong Bay 2021-2022 (GOCI-II 영상 기반 Random Forest 모델을 이용한 해빙 모니터링 적용 가능성 평가: 2021-2022년 랴오둥만을 대상으로)

  • Jinyeong Kim;Soyeong Jang;Jaeyeop Kwon;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1651-1669
    • /
    • 2023
  • Sea ice currently covers approximately 7% of the world's ocean area, primarily concentrated in polar and high-altitude regions, subject to seasonal and annual variations. It is very important to analyze the area and type classification of sea ice through time series monitoring because sea ice is formed in various types on a large spatial scale, and oil and gas exploration and other marine activities are rapidly increasing. Currently, research on the type and area of sea ice is being conducted based on high-resolution satellite images and field measurement data, but there is a limit to sea ice monitoring by acquiring field measurement data. High-resolution optical satellite images can visually detect and identify types of sea ice in a wide range and can compensate for gaps in sea ice monitoring using Geostationary Ocean Color Imager-II (GOCI-II), an ocean satellite with short time resolution. This study tried to find out the possibility of utilizing sea ice monitoring by training a rule-based machine learning model based on learning data produced using high-resolution optical satellite images and performing detection on GOCI-II images. Learning materials were extracted from Liaodong Bay in the Bohai Sea from 2021 to 2022, and a Random Forest (RF) model using GOCI-II was constructed to compare qualitative and quantitative with sea ice areas obtained from existing normalized difference snow index (NDSI) based and high-resolution satellite images. Unlike NDSI index-based results, which underestimated the sea ice area, this study detected relatively detailed sea ice areas and confirmed that sea ice can be classified by type, enabling sea ice monitoring. If the accuracy of the detection model is improved through the construction of continuous learning materials and influencing factors on sea ice formation in the future, it is expected that it can be used in the field of sea ice monitoring in high-altitude ocean areas.

Speed Trial Analysis of Korean Ice Breaking Research Vessel 'Araon' on the Big Floes (큰 빙판에서 아라온 호 쇄빙 속도 성능 해석)

  • Kim, Hyun Soo;Lee, Chun-Ju;Choi, Kyungsik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.478-483
    • /
    • 2012
  • The speed performances of ice sea trial on the Arctic(2010 & 2011) area were shown different results depend on the ice floe size. Penetration phenomena of level ice was not happened on medium ice floe and tore up by the impact force because the mass of medium ice floe is similar to the mass of Araon which is Korean ice breaking research vessel and did not shut up by the ice ridge or iceberg. The sea trial on the Amundsen sea was performed at the big floe which is classified by WMO(World Meteorological Organization). Three measurements of ice properties and five results of speed trial were obtained with different ice thicknesses and engine powers. To evaluate speed of level ice trial and model test results at the same ice thickness and engine power, the correction method of HSVA(Hamburg Ship Model Basin) was used. The thickness, snow effect, flexural strength and friction coefficient were corrected to compare the speed of sea trial. The analyzed speed at 1.03m thickness of big floe was 5.85 knots at 10MW power and it's 6.10 knots at 1.0m ice thickness and the same power. It's bigger than the results of level ice because big floe was also slightly tore up by the impact force of vessel based on the observation of recorded video.

Predictability of the Arctic Sea Ice Extent from S2S Multi Model Ensemble (S2S 멀티 모델 앙상블을 이용한 북극 해빙 면적의 예측성)

  • Park, Jinkyung;Kang, Hyun-Suk;Hyun, Yu-Kyung;Nakazawa, Tetsuo
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2018
  • Sea ice plays an important role in modulating surface conditions at high and mid-latitudes. It reacts rapidly to climate change, therefore, it is a good indicator for capturing these changes from the Arctic climate. While many models have been used to study the predictability of climate variables, their performance in predicting sea ice was not well assessed. This study examines the predictability of the Arctic sea ice extent from ensemble prediction systems. The analysis is focused on verification of predictability in each model compared to the observation and prediction in particular, on lead time in Sub-seasonal to Seasonal (S2S) scales. The S2S database now provides quasi-real time ensemble forecasts and hindcasts up to about 60 days from 11 centers: BoM, CMA, ECCC, ECMWF, HMCR, ISAC-CNR, JMA, KMA, Meteo France, NCEP and UKMO. For multi model comparison, only models coupled with sea ice model were selected. Predictability is quantified by the climatology, bias, trends and correlation skill score computed from hindcasts over the period 1999 to 2009. Most of models are able to reproduce characteristics of the sea ice, but they have bias with seasonal dependence and lead time. All models show decreasing sea ice extent trends with a maximum magnitude in warm season. The Arctic sea ice extent can be skillfully predicted up 6 weeks ahead in S2S scales. But trend-independent skill is small and statistically significant for lead time over 6 weeks only in summer.

Relationship between Spring Bloom and Sea Ice in the Northern East Sea

  • Park, Kyung-Ae;Choi, Hwa-Jeong
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.134-134
    • /
    • 2010
  • Sea ices at the Tatarskiy Straitin the East/Japan Sea appear from November to April. Cold and fresh water, melted from the sea ices, may contain nutrients which are indispensable to spring bloom of phytoplankton and may provide a preferable condition to the spring bloom through changes in vertical structure of water column and stratification. Relation between the spring bloom along the Primorye coast and sea ices in the Tatarskiy Strait were investigated using multi-satellite multi-sensor data; ten-year SeaWiFS chlorophyll-a concentration data and PAR data, sea surface temperatures from NOAA/AVHRR, sea ice concentration and near-surface wind speed data from DMSP/SSMI, near-surface wind vectors from QuikSCAT, and others. We provided evidences of southwestward flowing cold water masses from sea ice and its relation of chlorophyll-a concentration. This study showed that year-to-year variations of chlorophyll-a concentration in spring were positively correlated with those of sea ice concentrations at the Tatarskiy Strait.

  • PDF

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic (북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.507-520
    • /
    • 2007
  • Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.

Climatic Characteristics Related with Sedimentary Process in Bransfield Strait, Antarctica (남극 브랜스필드 해협에서의 퇴적과정과 관련된 기후특성)

  • Lee, Bang-Yong;Kwon, Tae-Yong;Lee, Jeong-Soon;Yoon, Ho-Il;Yoon, Young-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.173-185
    • /
    • 2005
  • This study examines the relationships among sea ice concentration, surface air temperature, surface wind, and SST (Sea Surface Temperature) in Bransfield Strait to understand the climatic characteristics and its related sedimentary process there. In analyses of the monthly data, during the austral autumn (Mar., Apr., and May), the frequency of southeasterlies is correlated positively with the sea ice concentration and negatively with the surface air temperature, whereas that of northwesterlies is reverse. These relationships are explained by the process that the southeasterlies of the cold air from the Antarctic Continent affect the ocean current around Bransfield Strait. And then the ocean current makes the sea ice generated in the Weddell Sea drift into the strait. During the spring (Sep., Oct., and Nov.), sea ice concentration and surface air perature are closely correlated with the frequency of northwesterlies with warm air mass. In the some parts of the northern boundary region, the sea ice concentration in Bransfield Strait is positively correlated with the SST during the autumn and spring. Such relationship may rather propel the sea ice melting in proportion to the sea ice concentration during the autumn.

  • PDF