• Title/Summary/Keyword: scratch speed

Search Result 38, Processing Time 0.022 seconds

Development of CMP process for reducing scratches during ILD CMP (ILD CMP중 Scratch 감소를 위한 CMP 공정기술 개발)

  • Kim, In-Gon;Kim, In-Kwon;Prasad, Y. Nagendra;Choi, Jea-Gon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.59-59
    • /
    • 2009
  • 현재 CMP분야는 광역 평탄화 반도체 소자의 집적화 및 소형화가 진행됨에 따라서 CMP 공정의 중요성은 날로 성장하고 있다. 하지만 이러한 CMP공정은 불가피하게도 scratch, pit, CMP residue와 같은 defect들을 발생시키고 있으며, 점점 선폭이 작아짐에 따라, 이러한 defect들이 반도체 수율에 미치는 영향은 심각해지고 있다. Defect들 중에 특히 scratch는 반도체에 치명적인 circuit failure를 일으키게 된다. 또한 반도체 내구성과 신뢰성을 감소시키게 되고, 누전전류를 증가시키는 등 바람직하지 못한 현상들이 생기게 된다. 본 연구에서는 scratch 와 같은 deflect들을 효율적으로 검출, 분석하고, scratch를 감소시키는데 그 목적이 있다. 본 실험을 위해 8" TEOS wafer와 commercial oxide slurry 및 friction polisher (Poli-500, G&P tech., Korea)를 사용하여 CMP 공정을 진행하였으며, CMP 공정조건은 각각 80rpm/80rpm/1psi(Platen speed/Head speed/Pressure)에서 1분 동안 연마를 한 후 scratch 발생 경향을 살펴보았다. CMP 후 wafer위에 오염되어 있는 slurry residue들을 제거하기 위해 SC-1, HF 세정을 이용하여 최적화된 post-CMP 공정기술을 제안하였다. Scratch 검출 및 분석을 위해 wafer surface analyzer (Surfscan 6200, Tencor, USA)와 optical microscope (LV100D, Nicon, Japan)를 사용하였다. CMP 공정 변수들에 따른 scratch 발생정도를 비교하였으며, scratch 발생 요인들에 따른 scratch 형태 및 발생정도를 살펴보았다. 최적화된 post-CMP 세정 조건은 메가소닉과 함께 SC-1 세정을 실시하여 slurry residue들을 제거한 후, HF 세정을 실시하여 잔여 오염물들을 제거하고 검출이 용이하도록 scratch를 확장시킬 수 있도록 제안하였으며, 100%의 particle removal efficiency (PRE)를 얻을 수 있었다. 실제 CMP 공정후 post-CMP 세정 단계별 scratch 개수를 측정한 결과, SC-1 세정 후 약 220개의 scratch가 검출되었으며, 검출되지 않았던 scratch가 HF 세정 후 확장되어 드러남에 따라 약 500개의 scratch 가 검출되었다.

  • PDF

Nano-scale Patterning of Al thin film on 4H-SiC using AFM tip Scratching (AFM Scratching 기법을 이용한 4H-SiC기판상의 Al 박막 초미세 패턴 형성 연구)

  • Ahn, Jung-Joon;Kim, Jae-Hyung;Park, Yea-Seul;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.351-351
    • /
    • 2010
  • Nanoscale patterning using an atomic force microscope tip induced scratching was systematically investigated in AI thin film on 4H-SiC. To identify the effects of the scratch parameters, including the tip loading force, scratch speed, and number of scratches, we varied each parameters and evaluated the major parameter which has intimate relationship with the scale of patterns. In this work, we present the successful demonstration of nano patterning of Al thin film on a 4H-SiC substrate using an AFM scratching and evaluated the scratch parameters on Al/4H-SiC.

  • PDF

Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nano-scratch Process (나노스크래치 공정을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석)

  • 이정우;강충길;윤성원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.139-146
    • /
    • 2004
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation scratch test was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass 7740) were used as specimens, and forming conditions to reduce the elastic recovery and pile-up were proposed. The indenter was modeled as a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. Variables of the nanoindentation scratch test analysis are scratching speed, scratching load, tip radius and tip geometry. The nano-indentation scratch tests were performed by using the Berkovich pyramidal diamond indenter. Comparison between the experimental data and numerical result demonstrated that the FEM approach can be a good model of the nanoindentation scratch test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

Nanotribology of PMMA Thin Films Using an AFM (AFM을 이용한 PMMA (Poly Methyl Methacrylate) 박막의 나노트라이볼로지 연구)

  • 김승현;김용석
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • Nano-scratch tests were performed on PMMA thin films spin-coated on a Si substrate using an atomic force microscopy (AFM) with loads ranging form 10nN to 100nN. At low loads, a ridge pattern was formed on the PMMA thin film surface. No wear particles were observed during the pattern-forming mild wear. At high loads, severe wear by plowing occurred, accompanied by wear particles. The film with the highest hardness showed the highest wear resistance. Friction force generated during the scratching was measured, which was closely related with surface deformation of the film. A simple empirical equation to deduce scratch hardness of the film from a linear fixed-distance scratch test was proposed, and scratching-speed dependency of the scratch hardness was displayed.

Quantitative Evaluation of Scratch Behavior for Polymeric Materials (고분자 소재의 스크래치 거동의 정량적 평가)

  • Baek, Ki-Wan;Lee, Sung-Goo;Lee, Jae-Heung;Choi, Kil-Yeong;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.273-283
    • /
    • 2009
  • Recent research issues on the scratch behaviors of polymeric materials has been investigated. In this study, the scratch characterization of polymeric materials with respect of experimental parameters, such as nature of the material, temperature, applied load, test speed, surface treatment, scratch number of times, polymer structure/functional groups, degree of cross-linking, and crystallinity, are reviewed. In addition, the testing standards and methodologies which could quantify the scratch behaviors are introduced and the current international standards are compared and summarized. The latest technical approaches for evaluating the scratch behaviors and improving the scratch resistance of polymers are also discussed.

A study on the relationship between rubbing scratches on an alignment film and rubbing cloths using a high-speed camera

  • Inoue, Y.;Kuramoto, Y.;Hattori, M.;Adachi, M.;Kimura, M.;Akahane, T.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.125-128
    • /
    • 2011
  • Alignment failure sometimes occurs during the rubbing process because the rubbing cloth comes in direct contacts with the surface of the alignment film. A number of researches observed and evaluated the surface of the alignment film after the rubbing process had been reported. The real-time rubbing process has not been observed directly yet, though. In this study, the movement of the piles of the rubbing cloth during the rubbing process was observed with a high-speed camera. Furthermore, the relationship between the rubbing scratch on the alignment films and the movement of the pile was investigated. It was found that the movement of the pile affected the rubbing scratches.

A study on the Mathematical Tension Model for a Non-contact Transfer of a Moving Web in R2R e-Printing Systems (롤투롤 시스템에서의 비 접촉 이송 시스템을 위한 수학적 장력 모델에 관한 연구)

  • Lee, Chang-Woo;Kim, Ho-Joon;Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.894-898
    • /
    • 2009
  • In a post printing section of roll to roll printing systems, scratch problem is the major defects. The functional qualities such as conductivity, mobility could deteriorate because of the scratch defect. In general, the scratch of the printed pattern on the flexible substrate was induced from a contact between rolls and printed pattern in the post printing section. In this paper, for non-contacting transfer of a moving web, a mathematical tension model has been developed considering strain due to air floatation and the proposed mode has been validated by numerical simulation. Additionally, the correlation between floatation height and speed compensation to control the tension and register are investigated. On the basis of the proposed model, a guide line of speed control in R2R printing system is presented to guarantee the non-contact between rolls and R2R printed pattern on the flexible substrate.

Formability of Non-Vinyl Pre-coated Metal Sheet (Non-Vinyl Pre-coated Metal재의 성형성에 관한 연구)

  • Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.121-128
    • /
    • 2001
  • This study has been performed to investigate formability of non-vinyl PCM(pre-coated metal)sheet. First, physical test of PCM sheets were tested to evaluate finish coating characteristic of PCM. And then, test equipment was made for friction test and three non-vinyl PCM sheets were tested by straight pulling method. This paper provides the results of the friction tests showing the influence of sheet surface texture and process conditions. It was found that the influence of contact pressure and speed had an effect upon the level of friction. Also using tests, the scratch resistance of a series of polyester coating has been investigated. This investigation aims to clarify the process conditions that prevent the scratch of PCM to form the good electrical appliances such as microwave oven, air conditioner and refrigerator etc.

  • PDF

Experiments on the Grinding Conditions for Helical Scan Grinding of a Glass Material (유리 재료의 헬리컬 스캔 연삭 조건 실험)

  • Lee, Dae-Uk;O, Chang-Jin;Lee, Eung-Seok;Kim, Ok-Hyeon;Kim, Seong-Cheong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.165-170
    • /
    • 2001
  • In normal grinding abrasive particles of a grinding wheel rotate on planes parallel to the direction of workpiece fred. which may induce continued scratch lines on ground surface as the workpiece feeds. Instead in helical scan grinding the planes make an angle, called a helical angle, with the feeding direction. Thus scratch lines produced by abrasive particles per one revolution are discontinued which implies that the generation of scratch lines are suppressed by the helical scan grinding. In this study some experimental works have been done on the helical scan grinding of glass to find the effects of grinding conditions on the surface roughness and estimate the optimal grinding conditions. The helical angle, fred rate, material removal rate and the wheel speed are taken as factors for three kinds of grinding wheels i.e., coarse(#140 mesh), medium(#400) and fine(#800) diamond wheels. The experiments are scheduled by Taguchi technique and ANOVA has been carried out for the interpretation of the results. As a result of this study effects of the factors are verified quantitatively showing that the major factors are changed according to the wheel's mesh size and the helical angle is one of the influencing factors on the surface quality.

  • PDF

Two-Level Scratchpad Memory Architectures to Achieve Time Predictability and High Performance

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.215-227
    • /
    • 2014
  • In modern computer architectures, caches are widely used to shorten the gap between processor speed and memory access time. However, caches are time-unpredictable, and thus can significantly increase the complexity of worst-case execution time (WCET) analysis, which is crucial for real-time systems. This paper proposes a time-predictable two-level scratchpad-based architecture and an ILP-based static memory objects assignment algorithm to support real-time computing. Moreover, to exploit the load/store latencies that are known statically in this architecture, we study a Scratch-pad Sensitive Scheduling method to further improve the performance. Our experimental results indicate that the performance and energy consumption of the two-level scratchpad-based architecture are superior to the similar cache based architecture for most of the benchmarks we studied.