• Title/Summary/Keyword: scratch

Search Result 847, Processing Time 0.034 seconds

Integrated Framework of Process Mining and Simulation Approaches for the Efficient Diagnosis and Design of Business Process (효율적인 비즈니스 프로세스 진단 및 설계를 위한 프로세스 마이닝과 시뮬레이션 통합 프레임워크)

  • Sahraeidolatkhaneh, Atieh;Han, Kwan Hee
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.5
    • /
    • pp.221-233
    • /
    • 2017
  • To survive in the ever-changing environment, organizations need to improve or innovate their business processes. As a result, to attain this objective, BPM (Business Process Management) concept is widely adopted in modern enterprises. BPM life cycle consists of diagnosis, design, implementation and enactment. Conventionally, diagnosis of business process within the BPM life cycle is usually conducted by manual methods such as interviews, questionnaires and direct observations of process. And (re)designing business processes is also usually done manually under supervision of business experts from scratch. It is time-consuming and error-prone tasks. The objective of this research is to integrate the diagnosis and (re)design phase of BPM life cycle by sharing automatically generated process model and basic statistics in the diagnosis phase based on the process mining method. Eventually, this approach will lead to automate the tasks of diagnosis and design of business process. To implement and to show the usefulness of the proposed framework, two case studies were conducted in this research.

Astaxanthin induces migration in human skin keratinocytes via Rac1 activation and RhoA inhibition

  • Ritto, Dakanda;Tanasawet, Supita;Singkhorn, Sawana;Klaypradit, Wanwimol;Hutamekalin, Pilaiwanwadee;Tipmanee, Varomyalin;Sukketsiri, Wanida
    • Nutrition Research and Practice
    • /
    • v.11 no.4
    • /
    • pp.275-280
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Re-epithelialization has an important role in skin wound healing. Astaxanthin (ASX), a carotenoid found in crustaceans including shrimp, crab, and salmon, has been widely used for skin protection. Therefore, we investigated the effects of ASX on proliferation and migration of human skin keratinocyte cells and explored the mechanism associated with that migration. MATERIAL/METHOD: HaCaT keratinocyte cells were exposed to $0.25-1{\mu}g/mL$ of ASX. Proliferation of keratinocytes was analyzed by using MTT assays and flow cytometry. Keratinocyte migration was determined by using a scratch wound-healing assay. A mechanism for regulation of migration was explored via immunocytochemistry and western blot analysis. RESULTS: Our results suggest that ASX produces no significant toxicity in human keratinocyte cells. Cell-cycle analysis on ASX-treated keratinocytes demonstrated a significant increase in keratinocyte cell proliferation at the S phase. In addition, ASX increased keratinocyte motility across the wound space in a time-dependent manner. The mechanism by which ASX increased keratinocyte migration was associated with induction of filopodia and formation of lamellipodia, as well as with increased Cdc42 and Rac1 activation and decreased RhoA activation. CONCLUSIONS: ASX stimulates the migration of keratinocytes through Cdc42, Rac1 activation and RhoA inhibition. ASX has a positive role in the re-epithelialization of wounds. Our results may encourage further in vivo and clinical study into the development of ASX as a potential agent for wound repair.

Adhesive Behaviors of the Aluminum Alloy-Based CrN and TiN Coating Films for Ocean Plant

  • Murakami, Ri-Ichi;Yahya, Syed Qamma Bin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.2
    • /
    • pp.106-115
    • /
    • 2012
  • In the present study, TiN and CrN films were coated by arc ion plating equipment onto aluminum alloy substrate, A2024. The film thickness was about 4.65 ${\mu}m$. TiN and CrN films were analyzed by X-ray diffraction and energy dispersive X-ray equipments. The Young's modulus and the micro-Vickers hardness of aluminum substrate were modified by the ceramic film coatings. The difference in Young's modulus between substrate and coating film would affect on the wear resistance. The critical load, Lc, was 75.8 N for TiN and 85.5 N for CrN. It indicated from the observation of optical micrographs for TiN and CrN films that lots of cracks widely propagated toward the both sides of scratch track in the early stage of MODE I. TiN film began to delaminate completely at MODE II stage. The substrate was finally glittered at MODE III stage. For CrN film, a few crack can be observed at MODE I stage. The delamination of film was not still occurred at MODE II and then was happened at MODE III. This agrees with critical load measurement which the adhesive strength was greater for CrN film than for TiN film. Consequently, it was difficult for CrN to delaminate because the adhesive strength was excellent against Al substrate. The wear process, which the film adheres and the ball transfers, could be enhanced because of the increase in loading. The wear weight of ball was less for CrN than for TiN. This means that the wear damage of ball was greater for TiN than for CrN film. It is also obvious that it was difficult to delaminate because the CrN coating film has high toughness. The coefficient of friction was less for CrN coating film than for TiN film.

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

Effects of Surface Color and Morphology on the Mar Behaviors of Urethane-Acrylate Coatings (우레탄 아크릴 코팅 소재의 표면 색상 및 모폴로지가 긁힘 거동에 미치는 영향)

  • Jung, Won-Young;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The effects of surface color and morphology on the mar behaviors of urethane-acrylate coated surfaces were examined. The superiority of mar resistance was observed in the order of white, red and black-colored samples. This can be explained by a contrast effect. In other words, in case of black colored sample, it takes place the defuse reflection of the incident light on the damaged region where mar damage exerts, leading to whitening phenomenon. Therefore, the damaged region is easily recognized by contrasting the black background. On the other hand, it is difficult for the white-colored sample to perceive the mar-damaged area by the white background acting as protecting coloration. As the gloss of urethane-acrylate coated surface increases, it is observed that there is an increase in the number of carbonyl (-C=O) function group, amount of ethylene and silica. The enhancements of surface rigidity by adding the silica particles and formation of carbonyl function groups by the surface oxidation lead to the increase in mar resistance, while the increase of polyethylene wax is responsible for the improved gloss and smooth-faced surface. Based on the above findings, technical approaches leading the improvement of mar resistance of the urethane-acrylate coated surface are discussed.

Mechanical Stability of TiN and DLC Coated Instrument of Pedicle Screw System (TiN 및 DLC 코팅된 척추경나사못시스템 수술기구의 기계적 안정성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • Durability of instrument is one of the most important factor to ensure accurate treatment and decrease failure for the orthopedic surgical operation. Normally, a set-screw driver tip has been processed with hard coating for their higher durability and wear resistance. And several surface modification methods were obtained such as titanium nitride (TiN) coating, diamond like carbon coating, other nitriding, and etc. In this study, we have surface modified on set-screw driver tip with TiN and DLC, investigated whether the TiN and DLC coatings affect the mechanical properties and durability of the set-screw driver tip in the pedicle screw system. The surface morphologies were observed with scanning-electron microscopy (SEM), and the static/dynamic torsional properties were investigated with universal testing machine based on ASTM F543. Coating thickness of each coatings were commonly around $1^{\circ}C$. Static torsional stiffness, and ultimate torque values for DLC and TiN coated samples were significantly higher than those of non-coated sample by the pared T-test. Surface morphology of after the dynamic torsional test was more clean with less scratch or friction traces from DLC coating than that of TiN coating and non-coated sample.

Improving development environment for embedded software (내장 소프트웨어를 위한 개발 환경의 개선)

  • AHN, ILSOO
    • Journal of Software Engineering Society
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • RFID systems have been widely used in various fields such as logistics, distribution, food, security, traffic and others. A RFID middleware, one of the key components of the RFID system, perform an important role in many functions such as filtering, grouping, reporting tag data according to given user specifications and so on. However, manual test data generation is very hard because the inputs of the RFID middleware are generated according to the RFID middleware standards and complex encoding rules. To solve this problem, in this paper, we propose a black box test technique based on RFID middleware standards. Firstly, we define ten types of input conversion rules to generate new test data from existing test data based on the standard specifications. And then, using these input conversion rules, we generate various additional test data automatically. To validate the effectiveness of generated test data, we measure coverage of generated test data on actual RFID middleware. The results show that our test data achieve 78% statement coverage and 58% branch coverage in the classes of filtering and grouping, 79% statement coverage and 64% branch coverage in the classes of reporting.

  • PDF

A Developing a Teaching-Learning Model of Software Education for Non-major Undergraduate Students (비전공 학부생 대상의 SW 교육을 위한 교수-학습 모델 개발)

  • Sohn, Won-sung
    • Journal of Practical Engineering Education
    • /
    • v.9 no.2
    • /
    • pp.107-117
    • /
    • 2017
  • here are many cases that take a software education as a required course for non-major students in university curriculums. However, non-major students are experiencing various difficulties in the process of learning programming languages, and there is also the opposite opinion in terms of their effectiveness. In this study, we developed a design based software education model (DBSEM) and curriculum to solve these problems and applied it to undergraduate non-undergraduate students for the last 8 years. In the proposed method, we provide a specialized educational tool such as 'block-based programming tool', but developed 'core module' and 'concept learning module' for computational thinking and applied 'prototype design module' and coding strategy based on it. As a result, non-major undergraduates could easily learn block-based scripting tools and acquire core concepts of computational thinking.

A Comparative Study of Educational Programming Languages for Non-majors Students: from the Viewpoint of Programming Language Design Principles (비전공자를 위한 교육용 프로그래밍 언어의 비교 연구: 프로그래밍 언어 설계 원칙의 관점으로)

  • Kim, Youngmin;Lee, Minjeong
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.1
    • /
    • pp.47-61
    • /
    • 2019
  • As the SW-centered society has emerged, SW-based problem-solving capabilities is emphasized in all areas of society. It is a trend that universities are obliged to do SW basic education for non-majors students and they are carrying out programming education. This study derives grammatical elements based on conciseness, generality, and efficiency among the design principles of programming language and based on it, compares and analyzes visual programming language and diagramming language. As a result, the efficiency of Raptor is more powerful than Scratch in the simplicity and generality, and the same tendency can be confirmed in the result of the learner's obtained in programming lesson. We hope that this study will contribute to the design and implementation of programming education based on features of programming language.