• Title/Summary/Keyword: scratch

Search Result 852, Processing Time 0.03 seconds

Utilizing Advanced Pad Conditioning and Pad Motion in WCMP

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.171-175
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics and metal, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter level dielectrics and metal. Especially, defects like (micro-scratch) lead to severe circuit failure, and affects yield. Current conditioning method - bladder type, orbital pad motion- usually provides unsuitable pad profile during ex-situ conditioning near the end of pad life. Since much of the pad wear occurs by the mechanism of bladder type conditioning and its orbital motion without rotation, we need to implement new ex-situ conditioner which can prevent abnormal regional force on pad caused by bladder-type and also need to rotate the pad during conditioning. Another important study of ADPC is related to the orbital scratch of which source is assumed as diamond grit dropped from the strip during ex-situ conditioning. Scratch from diamond grit damaged wafer severely so usually scraped. Figure 1 shows the typical shape of scratch damaged from diamond. e suspected that intensive forces to the edge area of bladder type stripper accelerated the drop of Diamond grit during conditioning. so new designed Flat stripper was introduced.

  • PDF

Study on Surface Scratch Characteristics of Hard Disk by Ramp Loading Method Using a Scratch Tester (스크래치 테스터의 Ramp Loading 방법을 이용한 하드디스크의 표면 스크래치 특성에 관한 연구)

  • Lee R.J.;Kim D.E.;Kang T.S.;Cho Y.B.;Cho K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.484-487
    • /
    • 2005
  • In order to get the surface characteristics of the HDI of HDD, the surface damage mechanisms must be totally understood. Particle contamination in hard disk drives is a big concern in today's magnetic recording industry since they are major sources of reliability problems. Namely upon contact with the slider or a contaminant particle, the disk may be scratched or the particles may be embedded into the disk surface. In this work, comparison of scratches was made between those found on actual hard disks and those created using a scratch tester. It was found that ramp loading method is an effective way to make similar scratches as the actual ones. From the ramp loading condition, the relationship between the pressure and the scratch track width could be identified.

  • PDF

Evaluation of Scratch Characteristics of Diaphragm for Application of Hydrogen Compressor Parts

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.212-215
    • /
    • 2023
  • Diaphragm compressors play a crucial role in safely compressing large volumes of high-purity hydrogen gas without contamination or leakage, thereby ensuring quality and reliability. Diaphragm compressors use a thin, flat, triple-layered diaphragm plate that is subjected to repetitive piston pressure for compression. They are usually made of metallic materials such as stainless steel or Inconel owing to their high-pressure resistance. However, since they are consumable components, they fail due to fatigue from repetitive pressure and vibration stress. This study aims to evaluate the scratch characteristics of diaphragms in operational environments by conducting tests on three different samples: Inconel 718, AISI 301, and Teflon-coated AISI 301. The Inconel 718 sample underwent a polishing process, the AISI 301 sample used raw material, and the Teflon coating was applied to the AISI 301 substrate at a thickness of 50 ㎛. To assess the scratch resistance, reciprocating motion friction tests were performed using a tribometer, utilizing 220 and 2000 grit sandpapers as the counter materials. The results of the friction tests suggested that the Teflon-coated sample exhibited the lowest initial friction coefficient and consistently maintained the lowest average friction coefficient (0.13 and 0.11 with 220 and 2000 grit, respectively) throughout the test. Moreover, the Teflon-coated diaphragm showed minimal wear patterns, indicating superior scratch resistance than the Inconel 718 and AISI 301 samples. These findings suggest that Teflon coatings may offer an effective solution for enhancing scratch resistance in diaphragms, thereby improving compressor performance in high-pressure hydrogen applications.

Design and Fabrication of Scratch Drive Actuator for Optical Application using MEMS( Micro-electro-mechanical System) Technology (광학응용을 위한 초소형 SDA(Scratch Drive Actuator) 액튜에이터의 설계 및 제작)

  • 김지우;이승섭;권오대
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.905-908
    • /
    • 1999
  • In this paper, we present a polysilicon actuator on silicon wafer using surface micromachining technology which employs an electrostatic stepwise driven Scratch Drive Actuator to generate a force that can move an external object. For optical applications, we propose wavelength selector using distributed feedback structures and this micro actuator.

  • PDF

Development of scratch detecting algorithm for ITO coated glass Using image processing technique

  • Kim, Myun-Hee;Bae, Joon-Young;Park, Se-Hong;Lee, Sang-Ryong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.849-851
    • /
    • 2002
  • This research describes a image-processing technique for the scratch detecting algorithm for ITO coated glass. We use the modified logical thresholding method for binarization of gray-scale glass image. This method is useful to the algorithm for detecting the scratch of ITO coated glass automatically without need of any prior information of manual fine-tuning of parameters.

  • PDF

Study on Scratch Defect of Roll Forming Process (롤포밍공정에서의 스크래치 결함에 대한 연구)

  • Kim, Nak-Su;Hong, Seok-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1213-1219
    • /
    • 2001
  • In this paper, modeling of the multi-pass roll forming process with the finite element method and defect prediction in roll forming process are presented. In the roll forming process, there occurs the defect of scratch. It appears on tubes because of the friction between the strip and the roll, the unexpected sliding velocity and the contact pressure when fabricating the tubes. The surface of the product will be not uniform due to the defect. The scratch can be predicted with the simulation modeling of the finite element method, and can be avoided by modifying the design.

Nano-scale Patterning of Al thin film on 4H-SiC using AFM tip Scratching (AFM Scratching 기법을 이용한 4H-SiC기판상의 Al 박막 초미세 패턴 형성 연구)

  • Ahn, Jung-Joon;Kim, Jae-Hyung;Park, Yea-Seul;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.351-351
    • /
    • 2010
  • Nanoscale patterning using an atomic force microscope tip induced scratching was systematically investigated in AI thin film on 4H-SiC. To identify the effects of the scratch parameters, including the tip loading force, scratch speed, and number of scratches, we varied each parameters and evaluated the major parameter which has intimate relationship with the scale of patterns. In this work, we present the successful demonstration of nano patterning of Al thin film on a 4H-SiC substrate using an AFM scratching and evaluated the scratch parameters on Al/4H-SiC.

  • PDF

Design & development of a device for thin-film evaluation using a two-component loadcell (2축 로드셀을 이용한 박막평가장치의 설계 및 개발)

  • Lee, Jeong-Il;Kim, Jong-Ho;Park, Yon-Kyu;Oh, Hee-Geun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1448-1452
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin-film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the tangential forces simultaneously as the probe tip of the equipment approaches to the interface between thin-film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ${\sim}$ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester, the feasibility test was performed to evaluate the adhesive strength of thin-film.

  • PDF

Life Evaluation of CrN Coatings due to Wear Using Friction and Acoustic Emission Sensor (마찰 및 음향방출 신호를 이용한 CrN 코팅의 마모수명 평가)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.328-334
    • /
    • 1999
  • Acoustic emission (AE) sensor was used to evaluate the wear-life of CrN-coated steel disks with 1 $\mu\textrm{m}$ and 4 $\mu\textrm{m}$ coating thickness. The relationship between Af and friction signal from scratch test and sliding test was investigated. The first spatting of CrN film was detected by AR signals in the early stage of coating failures, and overall failures by friction signals. Therefore, the conservative design for coating-life should be done using the results of AE signals. Using the percent contact load, the ratio of sliding normal load to the critical scratch load and the number of cycles to failure was measured to predict the wear-life of CrN film. On the wear-life dia-gram the percent contact loads and the number of cycles to failure showed a good linear relationship on the log coordinate. As the load percentage was decreased, the diagram showed that the wear-limits, at which the coated steels survived more than 35,000 cycles, were about 4∼5% of the critical scratch loads.

A Study on Friction and Wear of TiN Film for the Wear-life Prediction (마모수명평가를 위한 TiN 경질박막의 마찰 및 마모특성에 관한 연구)

  • 정기훈;이영제
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.28-32
    • /
    • 1997
  • Indentation, scratch and sliding tests were carried out in this paper to predict the critical loads and the failure modes of TiN-coated specimen. The test specimens were S20C steels with three different substrate hardness, roughness and coating thickness. The scratch test shows that the coating thickness has more dominant effect on the critical load of coated disk than the hardness and the roughness. Using the percent contact load, the ratio of sliding load to the critical scratch load, the cycles to failure are measured to predict the wear-life of TiN film. On the wear-life diagram the percent loads and the cycle to failure show the good linear relation on semi-log coordinate. With decreasing loads, the diagram shows the wear-limit at which the coated disk survives more than 4000 cycles.