• Title/Summary/Keyword: scour vulnerability

Search Result 8, Processing Time 0.023 seconds

A Case Study of Scour Vulnerability Evaluation for Shallow Foundations during Floods (홍수시 얕은기초의 세굴위험도 평가 사례연구)

  • Park, Jae-Hyun;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.59-62
    • /
    • 2008
  • Scour vulnerability evaluation for shallow foundations was performed to assure bridge safety against scour in the national capital region. The case studies for 26 shallow foundations consisted of site investigation including boring test, bridge scour analysis for the design flood, bearing capacity evaluation of the bridge foundation before and after scour, and comprehensive evaluation of bridge scour vulnerability. Bridge scour vulnerability was determined based on the interdisciplinary concept considering predicted scour depth for the design floods and bearing capacity of foundation as well as dimensions of foundation. Nine of 26 shallow foundations showed the potential future vulnerability to scour with significant decrease in the bearing capacity of foundations due to scour and the remaining 17 were expected to maintain their stability against scour.

  • PDF

Evaluation of the Vulnerability of Bridge Foundations to Scour (세굴로 인한 교량기초의 위험도 평가)

  • Kwak, Ki-Seok;Park, Jae-Hyun;Lee, Ju-Hyung;Chung, Moon-Kyung;Kim, Jong-Cheon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.713-718
    • /
    • 2005
  • A methodology is developed to evaluate the vulnerability of bridge piers to scour and to help establish effective disaster measures, taking into account the locality and scour characteristics in Korea. Based on the bearing capacity of bridge foundation-ground integrating system changed by scour, this methodology is able to prioritize bridge foundations reflecting on the geotechnical factors as well as hydraulic ones. The bridge foundation vulnerability to scour is categorized into 7 groups considering the concise information of the bridge foundation-ground integrating system. A case study of implementing this method which includes the analysis of the scour depth and evaluation, and categorizing the scour vulnerability of bridge foundation is presented.

  • PDF

A Case Study of Bridge Scour Vulnerability Evaluation and Prioritization for National Highway Bridges in the National Capital Region (수도권 국도교량 세굴위험도 평가 및 등급화 사례 연구)

  • Park, Jae-Hyun;Kim, Jeong-Hun;An, Seong-Chul;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.7-21
    • /
    • 2008
  • Foundation failure due to bridge scour during floods is the leading cause of bridge failure. Performed were the evaluation of bridge scour vulnerability and prioritization on real bridges registered in the National Highway Bridge Inventory of the capital region. The case studies for 30 national highway bridges consist of site investigation including boring test, bridge scour analysis fur the design flood, bearing capacity evaluation of the bridge foundation before and after scour, comprehensive evaluation of bridge scour vulnerability, and prioritization. Nine of 26 spread (feting bridges showed the potential future vulnerability to scour with significant decrease in the bearing capacity of foundations due to scour and the remaining 17 spread footing bridges were expected to maintain their stability to resist the effects of scour. Three of 4 pile foundation bridges exhibited considerable decrease in the bearing capacity of foundation after scour.

Bridge Scour Prioritization and Management System (I) - System Development - (교량세굴 위험도 결정 및 유지관리 시스템 개발(I) - 시스템 개발 -)

  • Kwak, Kiseok;Park, Jae Hyun;Chung, Moon Kyung;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.187-195
    • /
    • 2006
  • A bridge scour management system is developed to evaluate the vulnerability of bridge piers to scour and to help establish effective disaster measures, taking into account the locality and scour characteristics in Korea. This system is programmed using the techniques of the geographical information system(GIS) for the storage, retrieval, and display of information regarding to bridge scour. The system functions are basically divided into two parts; prioritization and maintenance. Bridges are initially screened and prioritized for bridge scour inspection and evaluation using the basic information which is obtained from the office review. The bridge scour evaluation including site investigation is performed and the vulnerability of bridge piers is categorized into six groups taking into account the local scour depth, foundation bearing capacity, foundation type, foundation depth, and present scour condition. The system tabulates and plots all the data and the results.

Impact spectrum of flood hazard on seismic vulnerability of bridges

  • Yilmaz, Taner;Banerjee, Swagata
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.515-529
    • /
    • 2018
  • Multiple hazards (multihazard) conditions may cause significant risk to structures that are originally designed for individual hazard scenarios. Such a multihazard condition arises when an earthquake strikes to a bridge pre-exposed to scour at foundations due to flood events. This study estimates the impact spectrum of flood-induced scour on seismic vulnerability of bridges. Characteristic river-crossing highway bridges are formed based on the information obtained from bridge inventories. These bridges are analyzed under earthquake-only and the abovementioned multihazard conditions, and bridge fragility curves are developed at component and system levels. Research outcome shows that bridges having pile shafts as foundation elements are protected from any additional seismic vulnerability due to the presence of scour. However, occurrence of floods can increase seismic fragility of bridges at lower damage states due to the adverse impact of scour on bridge components at superstructure level. These findings facilitate bridge design under the stated multihazard condition.

Bridge Scour Prioritization and Management System (II) - System Verification - (교량세굴 위험도 결정 및 유지관리 시스템 개발(II) - 시스템 검증 -)

  • Kwak, Kiseok;Park, Jae Hyun;Yoon, Hyun Suk;Woo, Hyo Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.197-208
    • /
    • 2006
  • Case studies for real bridge sites are performed to verify the applicability of the Bridge Scour Management System in the field. The case studies for 20 bridges in Gangneung District of National Road Management consist of site investigations including the boring tests, bridge scour analyses for the design floods, bearing capacity evaluation of the bridge foundation before and after scour, and comprehensive evaluation of the bridge scour maintenance. The bridge scour management system is verified as an useful tool which can evaluate bridge scour vulnerability quantitatively, and is also proposed as a reasonable system which can help establish effective measures and secure the safety of bridges during floods.

Applied methods for seismic assessment of scoured bridges: a review with case studies

  • Guo, Xuan;Badroddin, Mostafa;Chen, ZhiQiang
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.497-507
    • /
    • 2017
  • Flooding induced scour has been long recognized as a major hazard to river-crossing bridges. Many studies in recent years have attempted to evaluate the effects of scour on the seismic performance of bridges, and probabilistic frameworks are usually adopted. However, direct and straightforward insight about how foundation scour affects bridges as a type of soil-foundation-structure system is usually understated. In this paper, we provide a comprehensive review of applied methods centering around seismic assessment of scoured bridges considering soil-foundation-structure interaction. When introducing these applied analysis and modeling methods, a simple bridge model is provided to demonstrate the use of these methods as a case study. Particularly, we propose the use of nonlinear modal pushover analysis as a rapid technique to model scoured bridge systems, and numerical validation and application of this procedure are given using the simple bridge model. All methods reviewed in this paper can serve as baseline components for performing probabilistic vulnerability or risk assessment for any river-crossing bridge system subject to flood-induced scour and earthquakes.

Flood fragility analysis of bridge piers in consideration of debris impacts (부유물 충돌을 고려한 교각의 홍수 취약도 해석 기법)

  • Kim, Hyunjun;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • This research developed a flood fragility curve of bridges considering the debris impacts. Damage and failures of civil infrastructure due to natural disasters can cause casualties as well as social and economic losses. Fragility analysis is an effective tool to help better understand the vulnerability of a structure to possible extreme events, such as earthquakes and floods. In particular, flood-induced failures of bridges are relatively common in Korea, because of the mountainous regions and summer concentrated rainfall. The main failure reasons during floods are reported to be debris impact and scour; however, research regarding debris impacts is considered challenging due to various uncertainties that affect the failure probability. This study introduces a fragility analysis methodology for evaluating the structural vulnerability due to debris impacts during floods. The proposed method describes how the essential components in fragility analysis are considered, including limit-state function, intensity measure of the debris impact, and finite element model. A numerical example of the proposed fragility analysis is presented using a bridge pier system under a debris impact.