• Title/Summary/Keyword: scientific thinking skills

Search Result 95, Processing Time 0.019 seconds

Improving the 2022 Revised Science Curriculum: Elementary School "Earth and Universe" Units (2022 개정 과학과 교육과정 개선 방향 고찰 - 초등학교 '지구와 우주' 영역을 중심으로 -)

  • Yu, Eun-Jeong;Park, Jae Yong;Lee, Hyundong
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.173-185
    • /
    • 2022
  • The purpose of this study is to present a reflective review of the earth and universe units from the revised elementary curriculum of 2007-2015 and suggest changes in the 2022 revised curriculum. For this purpose, we conducted an FGI with earth science educators and elementary school teachers regarding the content elements and system, the achievement standards and inquiry activity composition, and the vertical and horizontal curriculum connectivity. Free response and weighted hierarchical analysis items were incorporated into the FGI to ensure logical consistency of the inductively derived improvement. This analysis revealed that the composition of units by grade group had been unevenly distributed among each of the "earth systems" until the 2015 revised curriculum was finalized. Furthermore, the basic concept was still insufficient. We suggest that achievement standards centered on the learning content and skills must state specific scientific core competencies, and inquiry activities should include rigorous critical thinking, student written responses, and student inquiry and analysis. In the hierarchical analysis items, FGI emphasized the inclusion of essential content elements rather than reduction of content elements, understanding-oriented concept learning rather than interest-centered phenomenon learning, basic concept division learning before integration between subjects, and expanding vertical-horizontal connectivity rather than repeating and advancing learning. There is a limit to the generalizing the suggestions proposed in this study to the common opinion of elementary earth science experts. However, since the main vision of the 2022 revised curriculum is to gather opinions through educational entities' participation in a variety of educational subjects, it is suggested that our results should be incorporated as one of the opinions proposed for the 2022 curriculum revision.

Development and Effectiveness of Learning Programs on Visualization of Data for Gifted Students in Elementary School Science - Focusing on Using the Tableau Program - (초등학교 과학영재 학생을 대상으로 한 데이터 시각화 학습 프로그램 개발 및 효과 - Tableau 프로그램 활용을 중심으로 -)

  • Kim, Hyunguk
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.18-34
    • /
    • 2024
  • This study aimed to examine the effects of a science-learning program based on data visualization on the science inquiry and creative problem-solving abilities of elementary school science-gifted students. Accordingly, this research developed a data visualization science-learning program using Tableau, which had twelve sessions. The subjects encompassed 61 students in three gifted classes taught by the researcher. The scientific inquiry ability test and creative problem-solving ability test modified to suit the environment and situation were given to the subjects before and after the treatment. The results confirmed that science learning based on data visualization had no significant impact on basic science inquiry skills. Among the subdomains, significant results were obtained only in the reasoning subdomain. Moreover, integrative inquiry ability was significantly affected, unlike basic inquiry abilities. Among the five subdomains, significant differences were observed in three subdomains (data conversion, data interpretation, and variable control). However, concerning the generation of hypotheses and the control of variables, students exhibited confusion regarding the process of variable control and the exact concept of hypothesis development. This study also evaluated the effects of the program's application on creative problem-solving abilities and found a significant impact. Additionally, it was significantly different in all four subdomains. The results were interpreted to be owing to the students' mastery of Tableau's features, collaborative learning through discussion and debate, and the thematic impact of the data visualization program emphasizing procedural thinking. Finally, this study presented implications for science learning based on data visualization and the future direction of education.

Effects of Out-of-school STEAM Programs Based on Social-Emotional Learning (사회정서학습 기반의 학교 밖 STEAM 프로그램의 효과)

  • Lee, Hyunjoo;Lee, Soo-Yong;Jung, Jaeeun;Lee, Saebyoul;Choi, Eunhye;Kwak, E-Rang;Kim, Younghwa;Chang, Hyewon
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.740-753
    • /
    • 2022
  • This study was conducted to develop and apply an out-of-school STEAM program model based on Social-Emotional Learning (SEL) for underprivileged students in the lower grades. To this end, a STEAM program based on SEL was developed, with the following characteristics. First, by integrating traditional STEAM learning elements and SEL elements, a structured program was designed with consistent stages, including mindfulness meditation→present an authentic situation→creative design→emotional experiences→reflection. Second, the program was structured so that elementary school students could develop mathematical thinking and scientific inquiry skills in problem-solving situations in daily life. Third, the detailed themes for each STEAM program involved storytelling-based problem situations, as well as activities centered on play and sympathy to reflect the educational needs of underprivileged students. From these characteristics, a total of five programs were developed and applied to 16 teachers and 354 lower-grade elementary school students in 16 community children centers nationwide. The results were as follows. First, while students' satisfaction with the STEAM program was 4.16, there were no significant differences in STEAM satisfaction according to gender. Second, while all students' interest and self-efficacy, which was one of sub factors of STEAM attitude, were significantly improved, no significant difference was seen in STEAM attitudes according to gender. Third, although students' SEL competencies were not significantly improved, relationship skills, which were among the sub factors of SEL competencies, were significantly improved, and there were no significant differences in SEL competencies according to gender. From these results, a discussion on the effect of the out-of-school STEAM program for underprivileged students and directions for follow-up studies was suggested.

Flipped Learning in Socioscientific Issues Instruction: Its Impact on Middle School Students' Key Competencies and Character Development as Citizens (플립러닝 기반 SSI 수업이 중학생의 과학기술 사회 시민으로서의 역량 및 인성 함양에 미치는 효과)

  • Park, Donghwa;Ko, Yeonjoo;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.467-480
    • /
    • 2018
  • This study aims to investigate how flipped learning-based socioscientific issue instruction (FL-SSI instruction) affected middle school students' key competencies and character development. Traditional classrooms are constrained in terms of time and resources for exploring the issues and making decision on SSI. To address these concerns, we designed and implemented an SSI instruction adopting flipped learning. Seventy-three 8th graders participated in an SSI program on four topics for over 12 class periods. Two questionnaires were used as a main data source to measure students' key competencies and character development before and after the SSI instruction. In addition, student responses and shared experience from focus group interviews after the instruction were collected and analyzed. The results indicate that the students significantly improved their key competencies and experienced character development after the SSI instruction. The students presented statistically significant improvement in the key competencies (i.e., collaboration, information and technology, critical thinking and problem-solving, and communication skills) and in two out of three factors in character and values as global citizens (social and moral compassion, and socio-scientific accountability). Interview data supports the quantitative results indicating that SSI instruction with a flipped learning strategy provided students in-depth and rich learning opportunities. The students responded that watching web-based videos prior to class enabled them to deeply understand the issue and actively engage in discussion and debate once class began. Furthermore, the resulting gains in available class time deriving from a flipped learning approach allowed the students to examine the issue from diverse perspectives.

Analysis of the Level of Mathematical Concepts in Middle School Science Textbooks and Students' Cognitive Levels: Focused on Chemistry and Biology of the 2015 Revised Curriculum (중학교 과학 교과서에서 요구하는 수학 관련 과학 개념의 수준 및 학생들의 인지 수준 분석: 2015 개정 교육 과정의 화학과 생물을 중심으로)

  • Heesun Yang;Hyang-rae Cho;Seong-Joo Kang
    • Journal of Science Education
    • /
    • v.48 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • This study aimed to analyze students' cognitive levels and the cognitive demands of mathematical concepts related to science to understand why students struggle to comprehend scientific concepts and tend to avoid learning them. Initially, the mathematics and science curricula of the 2015 revised curriculum were examined to extract learning elements related to mathematics within middle school science content. The Curriculum Analysis Taxonomy (CAT) was then employed to analyze the cognitive levels required by the learning content. In the domain of chemistry, among a total of 20 learning elements related to mathematics, 12 required an understanding at the level of initial formal manipulation (3A), while 3 necessitated comprehension at the level of later formal manipulation (3B). It was noted that cognitive logic types such as proportional reasoning, mathematical manipulation, and measurement skills were prominently employed in elements corresponding to both 3A and 3B. As for biology, out of 7 learning elements related to mathematics, 3 required an understanding at the level of initial formal manipulation (3A), and 2 necessitated comprehension at the level of later formal manipulation (3B). Elements corresponding to both 3A and 3B in biology predominantly involved correlational logic, indicating a somewhat different cognitive challenge compared to the domain of chemistry. Considering that the average percentage of middle school students capable of formal thinking, as analyzed through the GALT short form, was 12.1% for the first year, 16.6% for the second year, and 29.3% for the third year, it can be concluded that the cognitive demands of mathematics-related chemistry and biology learning content are relatively high compared to students' cognitive levels.