• Title/Summary/Keyword: scientific inquiry capability

Search Result 8, Processing Time 0.021 seconds

The Effects of POE Model on Science Process Skills and Academic Achievement in Domain 'Earth and Space' of Elementary School Science (초등과학의 '지구와 우주' 분야에서 POE 수업모형 적용이 과학탐구능력 및 학업성취도에 미치는 영향)

  • Lee, Sang-Bong;Lee, Yong-Seob
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.2
    • /
    • pp.132-140
    • /
    • 2010
  • The purpose of this research is to explore the effects of the POE(Prediction-Observation-Explanation) teaching-learning model on the academic achievement and the capability of scientific inquiry of elementary school students. POE teaching-learning model is a three stage process modeling scientific inquiry : Prediction, Observation, and Explanation. This research is to see the effectiveness of the POE method in earth science class by applying this simple practical strategy out of various methods in science teaching with the purpose of improving the capability of scientific inquiry and the academic achievement of learners. The findings of the study are as follows: First, the POE strategy in science teaching-learning was found effective for the improvement of learners' scientific inquiry capability. Second, the POE strategy in science teaching-learning is effective for the improvement of learners' academic achievement in science. The findings mentioned above suggest that using the POE strategy in science class of elementary science education has significant effects on improvement of scientific academic achievement and scientific inquiry capability of learners compared with the general science teaching-learning strategy. It also shows to be highly recommendable for use in science class.

  • PDF

Young Children's Scientific Inquiry Capabilities and Curiosity : Effects of Mothers' Awareness of Science Education and Mutual Interaction (어머니의 유아과학교육에 대한 인식수준과 상호작용수준에 따른 자녀의 과학적 탐구능력과 호기심과의 관계)

  • Kim, Jeong-Ju
    • Korean Journal of Child Studies
    • /
    • v.30 no.2
    • /
    • pp.1-13
    • /
    • 2009
  • This study examined the extent to which young children's scientific inquiry capabilities and curiosity are affected by their mothers' awareness about science education and their mutual interaction. Instruments were Levels of Mothers' Awareness about Science Education and Interaction with Children (Jeon, 2006), Children's Scientific Thinking Capabilities (Lee, 2000), and Children's Curiosity (Lee, 2001). Differences between high-and low-ranked groups were analyzed by t-tests. Results showed that children whose mothers displayed high levels of awareness about science education and mutual interaction showed better scientific inquiry capabilities and curiosity than children whose mothers did not display such high levels. By confirming the significant role of mothers in their children's science education these results can be an aid to parent education.

  • PDF

A Freedom Inquiry Method by Revised Science Curriculum in 2007 (2007년 개정 과학과 교육과정에서 자유탐구 방안)

  • Lee, Yong-Seob;Park, Mi-Jin
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 2010
  • The purpose of this study is to present a Freedom Inquiry Method by Revised Science Curriculum in 2007. This study introduced IIM(Independent Inquiry Method), PBL(Problem Based Learning), Small Inquiry Method, Science Notebooks, Project Learning Method about Freedom Inquiry Method. The results of this study are as follows: First, IIM(Independent Inquiry Method) is studying method in the inquiry process center. The inquiry process is composed of total 9 phases, inquiry subject really it is, detailed aim deciding, information searching, it searches, quest result it arranges, aim evaluation, the report making, it announces, it evaluates, it is become accomplished. Second, It is a studying method which it starts with the problem which is Problem Based Learning, study atmosphere creation phase, problematic presentation phase and sleep static problem solving the phase which it attempts, it is become accomplished with autonomous studying phase, coordinated studying and discussion studying phase, discussion resultant announcement studying phase, arrangement and evaluation. Third, Small Inquiry Method, Call it accomplishes the call grade of the students among ourselves 4~8 people degree where only the quest learning capability is similar within class. Also interaction and coordinated function of the members between it leads and the subject which is given in the group it cooperates and it solves with it is a quest method which arrives to aim of commonness. This method divides on a large scale in three parts, it becomes accomplished in programming phase, quest accomplishment and resultant announcement. Fourth, Science Notebooks learns a scientific contents and a scientific quest function and the possibility of decreasing in order to be, from the fact that the help which it understands. This planing, data searching, it searches, becomes accomplished with resultant arrangement, announcement and evaluation. Fifth, The Project Learning Method the studying person oneself studying contents, it establishes a plan and it collects it accomplishes process of etc. it evaluates it leads and a subject and information and with real life it is a method which it studies naturally from the learning environment inside which is similar. This is preliminary phase, project start, project activity and project arrangement.

  • PDF

An Investigation of the Attitude Toward Science and Scientific Attitude for the Underachievers (학습(學習) 부진아(不振兒)의 과학(料學)에 대(對)한 태도(態度) 및 과학적(科學的) 태도(態度) 조사(調査) 연구(硏究))

  • Yi, Bum-Hong;Kim, Young-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.4 no.1
    • /
    • pp.26-33
    • /
    • 1984
  • This study was undertaken to investigate the general attitude toward science and scientific inquiry behavior of underachiever at the junior high school level. In this study, underachiever was defined as the one who is below the minimum acceptable performance level because of his/her deficiencies in prerequisites but who has the capability to reach the required mastery level in normal classroom. For the identification of the underachiever, IQ test and achievement test in science which were developed by the investigators were used. The attitude test which was to measure the general attitude toward science and scientific inquiry behaviors of the underachiever was also developed by the investigators. The tests were given to 250 1st grade junior high school students in one experimental school. Out of 250, 55 underachievers were identified. For the study, 55 underachievers with 57 normal students were compared. The findings of this study showed that there were significant differencies between underachievers and normal students in both attitude toward science and scientific inquiry behavior. They can be summarized as follows; 1. Awareness on science by underachievers was minimal compared to normal students. 2. Compared to normal students, there was a tendency by underachievers to think the influence of science on their real life is remote. 3. Underaschievers were less positive, less voluntary and were less persistent in science activities than normal students. 4. Underachievers were less interested in science than normal students. These findings showed us that there were significant relation between the attitude and achievement level. This suggests that fostering attitude toward science and scientific inquiry behavior is needed for the improvement of achievement level of underachievers.

  • PDF

Types of Scientific Questions Generated in Observational Activity by Elementary Students and Preservice Teachers (초등학생들과 초등예비교사들이 관찰활동에서 생성한 과학적 의문의 유형)

  • Lee, Hye-Jeong;Jeong, Jin-Su;Park, Kuk-Tae;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.5
    • /
    • pp.1018-1027
    • /
    • 2004
  • The purpose of this study was to identify and compare the types of scientific questions which were generated by elementary students and preservice teachers on the tasks of scientific observation. To identify the types of scientific questions, 4 observing tasks, dry grapes contained in soda pop, candlelight, celery, and a rock were administered to 40 sixth elementary students and 20 elementary preservice teachers. And then, the types and frequency of scientific questions generated by them were compared. The results showed that the types of scientific questions were classified into conjectural questions, causal questions, predictive questions, methodical questions and applicative questions. Further more, subordinate questions to the above questions were classified into object exploration questions and object verification questions, explicans exploration questions and explicans verification questions, result exploration questions and result verification questions, example exploration questions and example verification questions. Subordinate questions did not come out from the methodical questions. The types of scientific questions generated by elementary students and preservice teachers were identical, however, there were differences in frequency. This study supports that elementary students also have cognitive capability to generate various scientific questions. The results of this study may be used as a teaching strategy for the guidance of the direction and the method of scientific inquiry.

Study of Perception on Programming and Computational Thinking and Attitude toward Science Learning of High School Students through Software Inquiry Activity: Focus on using Scratch and physical computing materials (소프트웨어 활용 탐구 활동을 통한 고등학생의 프로그래밍과 컴퓨팅 사고력에 대한 인식 변화와 과학 학습에 대한 태도 조사 -스크래치와 피지컬 컴퓨팅 교구의 활용을 중심으로-)

  • Hwang, Yohan;Mun, Kongju;Park, Yunebae
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.325-335
    • /
    • 2016
  • Software (SW) education is guided by the government to operate not only computer subject matter but also related subject matter. SW education is highlighted in the 2015 Revised Curriculum and Guide for Operating SW Education. SW education is related with science education. For example, education on algorithms employing SW and activities using sensors/output control can be an effective strategy for scientific inquiry. The method can also be applied in developing Computational Thinking (CT) in students. In this study, we designed lessons to solve everyday scientific problems using Educational Programming Language (EPL) SW and physical computing materials and applied them to high school students. We conducted surveys that were modified from questionnaires of Internet application capability and based on the standard of accomplishment of SW education as well as elements of CT to find out the change in perceptions on programming and CT of students. We also conducted a survey on students' attitude toward science learning after an SW inquiry activity. In the results, perceptions on programming and CT of students were improved through lessons using unplugged activity, EPL SW, and physical computing. In addition, scores for interest, self-directed learning ability, and task commitment were high.

The Effect of Physics Instruction Using Infographics Based on Visual Thinking in High School (고등학교에서 시각적 사고에 기반한 인포그래픽 활용 물리 수업의 효과)

  • Noh, Sang Mi;Son, Jeongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.477-485
    • /
    • 2015
  • In this study, we tried to find the effects of carrying out infographics instruction based on visual thinking with the infographics materials presented in physics textbooks targeting specialized vocational high school students. Thus, 60 students were divided into the experimental group and the control group, the experimental group had 25 classes composed of 'infographics concept formation, infographics understanding activity, and infographics configuration activity', on the other hand, the control group were instructed by lecture-type class. The results of this study are as follows: First, features of the infographics created by the students include changes in types of presentation from 'simple arrangement' to 'simple reconfiguration' and from 'illustration' to 'comparative analysis', which were made by the visual thinking of the students activated in accordance with the increase of their configuration times. Second, instruction by using infographics, visual thinking significantly improved in the level of understanding, visibility, usability, and communicability. Third, after instruction using infographics, the mean score of the experimental group's achievement significantly improved. Fourth, there was a significant improvement in the area of 'normality of scientist, attitude on scientific inquiry, and scientific attitude' in the test of attitudes toward science. From the analysis results, we could conclude that instruction using infographics enhance students' understanding of scientific concepts and communication capability by improving visual thinking abilities, which have a positive impact on academic achievement and attitudes toward science.

Exploring the Possibility of Applying Social and Emotional Learning to Science Subjects: Analysis of Social Emotional Learning Contents in Science Textbooks (과학교과의 사회정서학습(Social and Emotional Learning) 적용 가능성 탐색: 과학 교과서의 과학과 사회정서학습 요소 분석)

  • Park, HyunJu
    • Journal of Science Education
    • /
    • v.41 no.3
    • /
    • pp.297-317
    • /
    • 2017
  • The purpose of this study was to investigate the possibility of Science Social and Emotional Learning(SSEL). The factors of SSEL were suggested, and by utilizing them, the contents of middle school's science and Chemistry 1 textbook were analyzed. The factors are as follow: numeracy, information and communication technology, critical thinking, creative thinking, personal and social capability, ethical understanding, and intercultural understanding. The results showed that the 60~70% of textbooks put emphasis on numeracy, information and communication technology, critical thinking, creative thinking while some factors were limited in th contents, which were personal and social capability, ethical understanding, and intercultural understanding. Therefore, teacher should try to reconstruct the teaching and learning materials and fill in the deficiencies of SSEL factors through class activities. In addition, it is suggested to study specific application methods such as science activities or experiment activities in detail to meet social and emotional learning.