• Title/Summary/Keyword: scientific inquiry

Search Result 624, Processing Time 0.018 seconds

Analysis of Elementary Students' Scientific Justification Activities based on Evidence (초등학생의 '증거' 사용에 따른 '과학적 정당화' 활동의 분석)

  • Jang, Shin-Ho;Jeong, Su-Jin
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.4
    • /
    • pp.414-426
    • /
    • 2010
  • For this study, inquiry-based learning program was developed for promoting elementary students' scientific justification activities based on their uses of scientific evidences. The program was applied to the 5th grade science class to examine the types of evidences and major features of scientific justification activities. Analysis of the data showed that the evidences used by students were classified into knowledge-based evidence, experience-based evidence and authority-based evidence. As for students' justification features, this study reports three major cases: a case evolving evidence and justification to become more valid and logical, as inquiry activities progressed, other case maintaining less valid and illogical evidence and justification, and final case revealing passive and reluctant participation in the inquiry activities. Overall, students' participation in scientific justification process became more valid and relevant, while there were some students who were unable to make the relevant relations between evidences and claims they made. The educational implications were discussed to consider more effective ways to improve the scientific classroom environment through social knowledge construction.

  • PDF

Elementary School Teachers' Scientific Explanation to Support Students' Inquiry: Focusing on 5th and 6th Grade Earth Science Curriculum (학생들의 탐구 학습을 돕기 위한 교사의 과학적 개념 설명 방식: 초등학교 5, 6학년 지구과학 영역을 중심으로)

  • Suh, Ye-Won;Kho, Hyeon-Duk;Park, Kyeong-Won
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.2
    • /
    • pp.161-177
    • /
    • 2009
  • This study aims to explore how teachers construct scientific explanation during instructional practices to help students' scientific inquiry. Before investigating teachers' classroom practices, elementary school science curriculum was examined to identify scientific concepts, particularly in earth science. Then, a total of six teachers' scientific explanation in actual teaching practices was analysed focusing on a) explanation of scientific concepts; b) rationale for scientific explanation; c) connection between scientific explanation and everyday explanation. The findings are as follows. First, the science curriculum provides $1{\sim}2$ main scientific concepts per unit, which are mostly appeared in the unit title. Those concepts and sub-concepts are not explicitly described but embedded in students' inquiry activities. Second, the teachers explain scientific concepts and discuss the rationale behind the scientific explanation, but rarely connect scientific explanation to everyday explanation. Also, the level of scientific explanations is low remaining level 1 or 2, not reaching 3, the highest level. Based on the results, the study suggests a) teachers need to provide explicit and clear explanations about scientific concepts; b) teachers are required to connect scientific explanation and everyday explanation; c) the level of teachers scientific explanation should be elevated by using an evidence, reasoning and claim, the components of scientific explanation as well as introducing new scientific concepts and inquiry activities.

  • PDF

Exploring the Relationships between Inquiry Problems and Scientific Reasoning in the Program Emphasized Construction of Problem: Focus on Inquiry About Osmosis (문제의 구성을 강조한 프로그램에서 나타난 탐구 문제와 과학적 추론의 관련성 탐색 -삼투 현상 탐구 활동을 중심으로-)

  • Baek, Jongho
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.77-87
    • /
    • 2020
  • Scientific inquiry has emphasized its importance in various aspects of science learning and has been performed according to various methods and purposes. Among the various aspects of science learning, it is emphasized to develop core competencies with science, such as scientific thinking. Therefore, it is necessary to support students to be able to formulate scientific reasoning properly. This study attempts to explore problem-finding and scientific reasoning in the process of performing scientific inquiry. This study also aims to reveal what factors influence this complex process. For this purpose, this study analyzed the inquiry process and results performed by two groups of college students who conducted the inquiry related to osmosis. To analyze, research plans, presentations, and group interviews were used. As a result, it was found that participants used various scientific reasoning, such as deductive, inductive, and abductive reasoning, in the process of problem finding for their inquiry about osmosis. In the process of inquiry and reasoning complexly, anomalous data, which appear regularly, and the characteristics of experimental instruments influenced their reasoning. Various reasons were produced for the purpose of constructing the best explanation about the phenomena observed by participants themselves. Finally, based on the results of this study, several implications for the development context of programs using scientific inquiry are discussed.

A Comparative Study on Elementary Science Textbooks in Korea and the U.S. : Focusing on $3^{rd}$ Grade Scientific Concepts and Inquiry Process in 'Matter' Units (한국과 미국의 초등학교 과학 교과서 비교 연구: 3학년 물질 영역의 과학적 개념 및 탐구 과정을 중심으로)

  • Suh, Ye-Won
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.5
    • /
    • pp.509-524
    • /
    • 2007
  • The purpose of the study is to compare elementary school science textbooks ($3^{rd}$ grade) in Korea and the U.S., centering on the ways to present scientific concepts and inquiry process in the units of 'matter.' The analysis is focused on: a) general structure of the units; b) how to present scientific concepts in terms of its connections and complexity; c) how to present inquiry process in terms of its types and skills. The findings of the study are as follows. First, the contents of 'matter' units are scientific discipline-based in both countries. The general structure of the units in Korean textbooks is unrestricted compared to those in the U.S. Second, the connections among the concepts are poor and the level of complexity is low in Korean textbooks, which are contrary to those in the U.S. textbooks. Third, it is a common feature that the inquiry process is based on learners' everyday experiences with simple experiments in two countries' textbooks. However, the inquiry process in the U.S. textbooks is provided with detailed instructions while the process in Korea is presented with diverse activities without formal guidelines. Based on the results, the study suggests three recommendations to improve Korean textbooks: a) science contents should be linked to other disciplines in order to promote practical applications; b) scientific concepts are required to be tightly connected and provided with in-depth explanations; c) inquiry process is needed to be presented with specific guidance to facilitate scientific thinking.

  • PDF

Elementary Students' Modification of Their Scientific Explanations based on the Evidences in Water Rising in Burning Candle Inquiry (초등학생의 증거에 기반한 과학적 설명의 수정 과정 고찰)

  • Lim, Heejun
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.3
    • /
    • pp.346-356
    • /
    • 2015
  • The purpose of this study was to explore the characteristics of elementary science gifted students' modification of scientific explanations based on evidences. For this study, sixteen $6^{th}$ elementary students were participated. The subjects of this study were enrolled in the program for the science gifted. Students were asked to generate initial hypotheses before experiment, and to modify and revise their scientific explanations based on the experiments about water rising in burning candle(s). All the processes of small group discussion during the inquiry were audio-recorded. Students' modification of their scientific explanations were appeared in three types: 1) appropriate connections among evidences, reasoning, and claims, 2) disconnections among evidences, reasoning, and claims and/or use of inappropriate reasoning, 3) scientific explanations without their own understanding. Other problems that students encountered in the processes of modification of their explanations were also discussed.

An Analysis of Korean Middle School Students' Achievement of Scientific Inquiry and the Nature of Science in TIMSS-R (우리 나라 중학생들의 과학적 탐구 및 과학의 본성 영역에서의 국제 성취도 분석)

  • Hong, Mi-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.336-344
    • /
    • 2002
  • The purpose of this study was to analyse achievement of 'Scientific Inquiry and the Nature of Science' in the Third International Mathematics and Science Study-Repeat (TIMSS-R), which was performed in 1999 with 38 nations participating. Korean 8th grade students' achievement of 'Scientific Inquiry and the Nature of Science' was compared to that of other countries and other content areas in science. Average percent correct of items in each subcategory - Scientific Method, Experimental Design, Scientific Measurements, Describing and Interpreting Data - was also analysed. Although 'Scientific Inquiry and the Nature of Science' topics were not included in intended curriculum in Korea, Korean students' average scale score of 'Scientific Inquiry and the Nature of Science' was significantly higher than international average and, in comparison with other science content areas, achievement of that area was relatively high. The reasons could be that the most students studied topics related to 'Scientific Inquiry and the Nature of Science' through the implemented curriculum and that the Korean teachers recognized the importance of inquiry. According to the results to analyze subcategories, the average percent correct of Korea were higher than 50% except the 'Scientific Measurements' subcategory. However, the international average percent correct were lower than 50%. Especially, the average percent correct of Korea was the highest in 'Describing and Interpreting Data' subcategory despite there were many students who were confused at observation, hypothesis and conclusion.

The Relationship between Orientations toward Scientific Inquiry Learning and Coping Strategies for Anomalous Situations in Elementary Students: A Comparison between General and Science-Gifted Students (초등 일반 학생과 과학영재 학생의 과학 탐구 학습 지향과 불일치 상황에 대한 대처 전략의 관계 비교)

  • Jiyoung Yoon;Hunsik Kang
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.2
    • /
    • pp.155-166
    • /
    • 2024
  • This study investigated and compared orientations toward scientific inquiry learning among general and science-gifted elementary students. It also investigated and compared the relationship between their orientations toward scientific inquiry learning and their coping strategies for anomalous situations. To realize this, 61 general elementary students and 53 science-gifted elementary students in Seoul were selected, and questionnaires were administered to investigate their orientations toward scientific inquiry learning and coping strategies for anomalous situations. In addition, semi-structured in-depth interviews were conducted individually with some of the general and science-gifted students. The results showed that among orientations toward scientific inquiry learning, regardless of grade level, the general students were most likely to possess 'concept understanding' and second most likely to exhibit 'scientific practice'. On the other hand, the science-gifted students demonstrated the highest frequency of 'scientific practice', with 'concept understanding' and 'complexity' also being relatively common. 'Activity driven' was found only among some of the general students and 'engineering practice' was found only among some of the science-gifted students. 'Process skills' were not found. No clear relationships between orientations toward scientific inquiry learning and coping strategies for anomalous situations were found. However, some differences in the choice of coping strategies for anomalous situations between the general and science-gifted students were discovered, even when they had the same orientations toward scientific inquiry learning. The educational implications of these findings were discussed.

An Analysis of Inquiry Activities in High School Physics Textbooks for the 2009 Revised Science Curriculum (2009 개정 과학교육과정에 따른 고등학교 물리 교과서 탐구활동 분석)

  • Kang, Nam-Hwa;Lee, Eun Mi
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.132-143
    • /
    • 2013
  • The purpose of this study was to examine the nature of inquiry activities proposed in high school physics textbooks that were developed based on the 2009 science curriculum in Korea. The inquiry activities were analyzed using the notion of scientific practices introduced in the Science Education Framework (NRC, 2012). The results showed that the inquiry activities in the textbooks emphasized two of eight types of scientific practices including "Analyzing and interpreting data" and "Constructing explanations". In contrast, the activities required students to "ask questions" only once in a total of 291 science inquiry activities. The other types of scientific practices appeared less than 10%. Also found was that the types of scientific practices were not relevant to the way inquiry activities were used for textbook content. Implications for the curriculum and science teacher education were discussed.

Analysis of Awareness of Teachers for Core Competencies and Scientific Core Competencies (핵심역량과 과학과 교과역량에 대한 초등 교사의 인식 분석)

  • Ha, Ji-hoon;Shin, Youngjoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.4
    • /
    • pp.426-441
    • /
    • 2016
  • The purpose of this study was getting the information for successful application to the national curriculum and students' core competencies enhancement, through investigation about competencies discussed in 2015 revised national curriculum development process and analysis about perception of 150 elementary school teachers in study. The results were as follows : Communication skill is considered to be the most important. Thinking ability what has been important traditionally is the middle of the rankings. Elementary school teachers think that a competency is specific to a subject. From this point of view, Creative/Scientific Problem-Solving Ability is the most important in science. They think that the enhancing of the ability of inquiry performance is highlighted in current science class. On elementary school teachers' awareness, inquiry model is the most effective in enhancing of scientific thinking and the ability of inquiry performance. And STS instruction model is in the other. PBL learning model and experimental inquiry model is the most effective in enhancing a competency has the highest feasibility like scientific thinking or the ability of inquiry performance.

The Effects of Science Activities Related to Seasonal Customs on Young Children's Scientific Inquiry Abilities and Communicative Competences (세시풍속과 연계한 과학 활동이 유아의 과학적 탐구능력과 의사소통능력에 미치는 영향)

  • Park, Tea-Soon;Kim, Seung-Hee
    • Korean Journal of Childcare and Education
    • /
    • v.13 no.2
    • /
    • pp.39-57
    • /
    • 2017
  • Objective: This study aims to investigate the effects of science activities related to seasonal customs on young children's scientific inquiry abilities and communicative competences. Methods: Participants consisted of twenty-six 5-year-old children who were going to day care center in Gwangju metropolitan city. Half of them belonged to the experimental group and the other half to the comparative group. The experimental group participated in science activities related to seasonal customs, and the comparative group participated in science activities according to the Nuri curriculum. Results: The results of this study showed that scientific inquiry abilities and communicative competences of the young children in the experimental group were meaningfully improved. That is to say, the scores of the five sub factors of scientific inquiry abilities and the two sub factors of communicative competences of the experimental group were meaningfully higher than those of the comparative group. Conclusion/Implications: It is significant that this study provides basic information for future science activities related to seasonal customs that will be conducted in the early childhood field.