• Title/Summary/Keyword: science-engineering integrated education

Search Result 135, Processing Time 0.034 seconds

Expert Suggestions for the Implementation of Science and Engineering Integrated Lesson in Middle Science Classrooms (과학·공학 융합 수업의 중학교 현장적용을 위한 전문가 제안)

  • Yi, Hyojin;Nam, Younkyeong
    • Journal of Engineering Education Research
    • /
    • v.23 no.3
    • /
    • pp.20-31
    • /
    • 2020
  • The purpose of this study is to suggest a meaningful way of implementing science and engineering integrated lessons in school science settings. To this end, two types of science and engineering integrated lesson units (focusing on the physic concepts of light and wave) were developed based on the core elements of science and engineering integrated lesson; object, context, engineering design, and connection with science. These two units were implemented in free semester program in a middle school in a metropolitan city. Throughout the process of program implementation, instructor's reflection and focus group interview with participant students were collected to reveal problems arising from the field implementation. In addition, engineering education experts were interviewed to discuss the potential problems and possible solutions for the problems. As results of the study, five main problems of implementing escience and engineering integrated lessons in a school science setting were revealed and practical solutions for the problems were suggested by the experts.

Suggesting a Framework for Science and Engineering Integrated Lesson Design and Engineering Design Level (과학·공학 융합 수업 준거틀 및 공학 설계 수준 제안)

  • Nam, Younkyeong;Lee, Yong Seob;Kim, Soon Shik
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.1
    • /
    • pp.121-133
    • /
    • 2020
  • This study proposes a lesson design framework to design a science and engineering integrated lesson in a meaningful and easy way based on engineering design, which is the core feature of STEM education. The science and engineering integrated lesson design framework is developed based on the analysis of domestic and foreign theoretical and practical research papers and expert discussion on science and engineering integrated education as well as the feedbacks from science teachers. The science and engineering integrated lesson design framework uses engineering design as the main pedagogical method. The framework includes the core elements of the engineering integrated lesson suggested in previous studies and the achievement level of each grade group suggested in NGSS and provides a way for teachers to easily introduce engineering design into science classes. In addition, the framework developed in this study complements the shortcomings of the complicated Korean STEAM education framework. It can also provide specific guidance to in-service teachers as well as pre-service teachers to easily understand and apply engineering design and problem solving processes to science and engineering integrated lessons.

Exploring the Perception of Integrated STEAM Secondary Teachers on Engineering Design (융합 인재 교육 경험을 가진 중등 과학 교사들의 공학적 설계에 대한 인식 탐색)

  • Choi, Yunhee
    • Journal of Science Education
    • /
    • v.45 no.3
    • /
    • pp.364-378
    • /
    • 2021
  • This study explores the perception of Engineering Design of teachers who have long experience in the Integrated STEAM education. The teachers participating in this study were 12 elementary and secondary teachers with more than five years of experience in the Integrated STEAM Education. The study conducted semi-structured interviews. Interview questions focused on experiences of Integrated STEAM Education and recognition of Engineering Design, whether or not to reflect the curriculum of Engineering Design, and actual cases of Integrated STEAM Education with Engineering Design. As a result of this study, the teachers who participated in this study recognized that 'identification and coexistence of concepts for science, technology, and engineering' about Engineering Design, 'Creative design is possible when creativity is added to Engineering Design', 'Engineering Design is to analyze the economic feasibility and utility of the output created through the creative design process', 'Engineering Design is only for students who choose a career in science and engineering'. Based on this research, We need to establish and present correct concepts for science, technology, and engineering, and make an effort to include Engineering Design for solving scientific problems in the curriculum. In addition, we will have to develop and spread the Integrated STEAM Education program including Engineering Design and apply it in the field. Through this, we will have to find concrete action plans to improve the perception of science and engineering Integrated STEAM programs and Engineering Design among novice teachers and preservice teachers.

Secondary Teachers' Perceptions and Needs Analysis on Integrative STEM Education (통합 STEM 교육에 대한 중등 교사의 인식과 요구)

  • Lee, Hyo-Nyong;Son, Dong-Il;Kwon, Hyuk-Soo;Park, Kyung-Suk;Han, In-Ki;Jung, Hyun-Il;Lee, Seong-Soo;Oh, Hee-Jin;Nam, Jung-Chul;Oh, Young-Jai;Phang, Seong-Hye;Seo, Bo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.1
    • /
    • pp.30-45
    • /
    • 2012
  • Educational communities around the world have concentrated on integrative efforts among science, technology, engineering and mathematics (Science, Technology, Engineering, and Mathematics: STEM) subjects. Korea has focused on integrative education among STEAM (Science, Technology, Engineering, Arts, and Mathematics) school subjects to raise talented human resources in the fields of science and technology. The purpose of this study was to analyze secondary school science, technology, and mathematics teacher's perceptions and needs toward integrated education and integrative STEM education. A total of 251 secondary school teachers from all areas of the country who have taught science, mathematics, and technology were surveyed by using a self-reported instrument. The findings were as follows: First, teachers have used little integrated education in their classes due to insufficient time in the actual preparation of the integrated education and the lack of expertise, teaching experience, and teaching-learning materials for the integrated education, while they have positive thoughts about the need of integrated education. Second, they presented several needs to facilitate the integrated education: development of a variety of integrated programs, school administrative and financial support, and in-service teachers' training. Third, overall perception toward integrated STEM education was not sufficient, but most teachers perceived the need toward integrated STEM education due to students' development in their creativity, thinking skills, and adaptability. Fourth, they perceived that it was imperative to develop the various integrated STEM education programs, distribute the materials, and help STEM teachers' understanding toward integrated STEM education. Fifth, they perceived that the most relevant method to integrate STEM subjects was the problem solving approach. In addition, they appreciate that the integrated STEM education is highly efficient in not only developing integrated problem solving skills and STEM related literacy, but also in positively impacting the rise of talented human resources in the fields of science and technology. In order to increase the awareness of STEM-related secondary school teachers and vitalize the integrated STEM education, it is necessary to develop and spread a variety of programs, effective teaching and learning materials, and teachers' training programs.

The Role of Science Knowledge Application in Improving Engineering Problem Solving Skills

  • Nam, Younkyeong;Chae, Jimin
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.436-445
    • /
    • 2019
  • This study presents how two types of integrated science and engineering lessons affect students' engineering problem solving skills and their perceptions of engineering. In total, 146 middle school students participated in this study. Eighty-six students participated in the Type I lesson (complete engineering design lesson with a science knowledge application) and 60 students participated in the Type II lesson (engineering design without a science knowledge application). Two main datasets, (1) students' Creative Engineering Problem Solving Propensity (CEPSP) measurement scores and (2) open-ended survey questions about students' perceptions of engineering, were collected before and after the lessons. The results of this study show that after participating in the Type I lesson, students' CEPSP scores significantly increased, whereas the CEPSP scores of the students who participated in the Type II lesson did not increase significantly. In addition, students who participated in the Type I lesson perceived engineering and the engineering integrated science lesson differently compared to the students who participated in the Type II lesson. The results of this study show that engineering integrated science, technology, engineering & mathematics (STEM) lessons should include a complete engineering design and a science knowledge application to improve students' engineering problem solving skills.

The Impact of Integrating Engineering into Science Learning on Student's Conceptual Understandings of the Concept of Heat Transfer

  • Park, Mi-Sun;Nam, Youn-Kyeong;Moore, Tamara;Roehrig, Gillian
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.2
    • /
    • pp.89-101
    • /
    • 2011
  • Science, Mathematics, Engineering, and Technology (STEM) integrated education has been spotlighted as a new approach for promoting students' conceptual understanding and supporting their future career in STEM field. There is increasing evidence of the positive impact of using a whole design process that can be an example of STEM integrated activities to improve students' conceptual understanding and problem solving skills. However, there is a lack of information on how teachers should accomplish science and engineering integration activities in their classroom and what process they should pay attention. To answer this question, we research the relationship between an design process and students' conceptual understanding using an engineering design activity, called 'Save the Penguins', and study on how each step in an engineering design process in this activity enhance students' conceptual knowledge in science. We found that testing their prototypes and discussing with their peers were the most important process for students to understand and apply science concept for their design, even though the whole engineering design process (demonstration about radiation, discussion about examples in our lives, and testing and reviewing their prototypes, and making final design) helps the students understand the scientific concepts.

To Analyze the Trend of Integrated Education from MST to STEAM on Mathematics Education (수학교육 관점에서 본 MST 교육에서 STEAM 교육까지 통합교육의 흐름 분석)

  • Kim, In Kyung
    • Journal for History of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.45-69
    • /
    • 2016
  • In this study, we investigate integrated educations as an alternative educational method. I look around the developments of the integrated educations from MST education through STEAM education, especially in mathematics education. I analyzed integrated educations such as MST, STS, STEM, STEAM educations and compare them to each other, in mathematics education. And I discuss how to apply STEAM education to Korean mathematics education. I suggest a proper integrated education, in particular, STEAM education, as one that is suitable for Korean mathematics education.

An Integrated Numerical Analysis Framework for Engineering Education in e-Science Environment (e-사이언스 환경에서 공학 교육을 위한 통합 수치 해석 프레임워크)

  • Park, Sook-Young;Kang, Hye-Jeong;Kim, Yoon-Hee
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • The analytical experiments for fluid dynamics lead a sequence of complex scientific computations composing of numerical equations and require enormous computing resources with appropriate management tools. Currently most studies on e-Science environment for numerical studies focus on solving specific problems to drag out the best performance of matters and have less interest in providing a common framework to apply for diverse numerical domains in engineering education, especially for fluid dynamics. This paper presents an integrated e-Science experiment tool which could be easily applicable to solve various numerical analyses in fluid dynamics. As a proof-of-concept, an integrated e-Science framework with three numerical analyses has been designed and implemented over UNICORE that runs over grid computing environment.

  • PDF

Design of a Beam-coupling System for a Chip-integrated Spectrometer with a Discrete Linear Waveguide

  • Liu, Zhiying;Jiang, Xin;Li, Mingyu
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.229-237
    • /
    • 2020
  • In this study, a beam-coupling system is designed to improve the coupling efficiency of achip-integrated spectrometer when the waveguide is arranged in a linear and discrete manner. In the proposed system the beam is shaped to be anti-Gaussian, to deposit adequate energy in the edge waveguides. The beam is discretely coupled to the corresponding waveguide by a microlens array, to improve the coupling efficiency, and is compressed by a toroidal lens to match the linear discrete waveguides. Based on the findings of this study, the coupling efficiency of the spectrometer is shown to increase by a factor of 2.57. Accordingly, this study provides a reference basis for the improvement of the coupling efficiency of other similar spectrometers.

Exploring the Impact of a STEM Integration Teacher Professional Development Program on Secondary Science and Mathematics Teachers' Perceptions of Engineering and Their Attitude toward Engineering Integrated Teaching

  • Wang, Hui-Hui;Nam, Younkyeong
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.484-499
    • /
    • 2015
  • This study explores the impact of a STEM integration teacher professional development program focusing on teachers' perception of engineering and their attitudes toward integrating engineering into teaching. A total of sixty-eight teachers from ten schools participated in the program for five days. Data are collected from three main sources including (1) pre and post concept maps probing teachers' perceptions about the engineering discipline, (2) a pre and post survey measuring teachers' self-efficacy of teaching science/mathematics within the engineering context, and (3) engineering integrated science and (or) mathematics lesson plans and teaching reflections. This study utilizes both qualitative and quantitative research methods depending on the data we have collected. The results show that both science and math teachers thought that integrating engineering into teaching provided valuable outcomes, i.e., promoting students' learning about engineering and improving their interest in science or math through real-world problem solving exercises. Participants also felt more comfortable about integrating engineering in their teaching after the program. The results also imply that the teachers' understandings of engineering become more concrete after the program. This study also provides an overview of the challenges and advantages of teaching engineering in K-12 science and mathematics classrooms.