• Title/Summary/Keyword: science simulation

Search Result 11,068, Processing Time 0.039 seconds

Design of High Efficiency Permanent Magnet Synchronous Generator for Application of Waste Heat Generation ORC System (폐열발전 ORC 시스템 적용을 위한 고효율 영구자석형 동기발전기 설계)

  • Yeong-Jung Kim;Seung-Jin Yang;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2023
  • The power generation method using expensive diesel has operation problems such as high cost diesel generator and a lack of reserved power due to increase of power demand in some islands, requiring expansion of power generation facilities. To solve this problems, it is necessary to improve the efficiency of power generation facilities through an ORC(Organic Rankin Cycle) system application that uses waste heat as a heat source. Therefore, localized application technology of price competitive and highly reliable ORC power generation system is needed, and optimization technology of generators is having great effect, so this study performed two generator designs to get a high-efficiency generator with an optimized 30kW output. The comparison of simulation data for two designed models showed that a generator with SPM factor of 46.2% had an efficiency of 92.1% and a power ouput of about 23.2kW based on 12,000rpm, a generator with SPM factor of 44.46%, had a power output of 27.9kW and efficiency of 93.6% based on above rpm. For the verification of improved design model with SPM factor of 44.46%, the prototype test system with 110kW motor dynamometer was installed and got to the efficiency of 92.08% with conditions of the rated capacity 25kW at 12,000rpm, the test results of prototype generator showed the validity of generator design.

Dynamic Channel Management Scheme for Device-to-device Communication in Next Generation Downlink Cellular Networks (차세대 하향링크 셀룰러 네트워크에서 단말 간 직접 통신을 위한 유동적 채널관리 방법)

  • Se-Jin Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, the technology of device-to-device(D2D) communication has been receiving big attention to improve the system performance since the amount of high quality/large capacity data traffic from smart phones and various devices of Internet of Things increase rapidly in 5G/6G based next generation cellular networks. However, even though the system performance of macro cells increase by reusing the frequency, the performance of macro user equipments(MUEs) decrease because of the strong interference from D2D user equipments(DUEs). Therefore, this paper proposes a dynamic channel management(DCM) scheme for DUEs to guarantee the performance of MUEs as the number of DUEs increases in next generation downlink cellular networks. In the proposed D2D DCM scheme, macro base stations dynamically assign subchannels to DUEs based on the interference information and signal to interference and noise ratio(SINR) of MUEs. Simulation results show that the proposed D2D DCM scheme outperforms other schemes in terms of the mean MUE capacity as the threshold of the SINR of MUEs incareases.

Leg Fracture Recovery Monitoring Simulation using Dual T-type Defective Microstrip Patch Antenna (쌍 T-형 결함 마이크로스트립 패치 안테나를 활용한 다리 골절 회복 모니터링 모의실험)

  • Byung-Mun Kim;Lee-Ho Yun;Sang-Min Lee;Yeon-Taek Park;Jae-Pyo Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.587-594
    • /
    • 2023
  • In this paper, we present the design and optimization process of an on-body microstrip patch antenna with a paired T-type defect for monitoring fracture recovery of human legs. This antenna is designed to be light, thin and compact despite the improvement of return loss and bandwidth performance by adjusting the size of the T-type defect. The structure around the applied human leg is structured as a 5-layer dielectric plane, and the complex dielectric constant of each layer is calculated using the 4-pole Cole-Cole model parameters. In a normal case without bone fracture, the return loss of the on-body antenna is -66.71dB at 4.0196GHz, and the return loss difference ΔS11 is 37.95dB when the gallus layer have a length of 10.0mm, width of 1.0mme, and height of 2.0mm. A 3'rd degree polynomial is presented to predict the height of the gallus layer for the change in return loss, and the polynomial has a very high prediction suitability as RSS = 1.4751, R2 = 0.9988246, P-value = 0.0001841.

Heating Characteristics of Carbon Fiber Polyimide-Coated by Electrophoretic Deposition (전기영동증착법으로 폴리이미드를 코팅한 탄소섬유의 발열 특성 연구)

  • Geon-Joo Jeong;Tae-Yoo Kim;Seung-Boo Jung;Kwang-Seok Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.90-94
    • /
    • 2023
  • Carbon fiber(CF) with excellent thermal conductivity and electrical conductivity is attracting attention as an alternative material because metal heating elements have problems such as high heat loss and fire risk. However, since CF is oxidized and disconnected at about 200℃ or higher, the application of heating elements is limited, and CF heating elements in the form of vacuum tubes are currently used in some commercial heaters. In this work, polyimide(PI) with high heat resistance was coated on the surface of carbon fiber by electrophoretic deposition to prevent oxidation of CF in the atmosphere without using a vacuum tube, and the coating thickness and heat resistance were investigated according to the applied voltage. The heater made by connecting the PI-coated CF heating elements in series showed stable heating characteristics up to 292℃, which was similar to the heating temperature result of the heat transfer simulation. The PI layer coated by the electrophoretic deposition method is effective in preventing oxidation of CF at 200℃ or higher and is expected to be applicable to various heating components such as secondary batteries, aerospace, and electric vehicles that require heat stability.

Stopping Power Ratio Estimation Method Based on Dual-energy Computed Tomography Denoising Images for Proton Radiotherapy Planning (양성자치료계획을 위한 이중에너지 전산화단층촬영 잡음 제거 영상 기반 저지능비 추정 방법)

  • Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.207-213
    • /
    • 2023
  • Computed tomography (CT) images are used as the basis for proton Bragg peak position estimation and treatment plan simulation. During the Hounsfield Unit (HU) based proton stopping power ratio (SPR) estimation, small differences in the patient's density and elemental composition lead to uncertainty in the Bragg peak positions along the path of the proton beam. In this study, we investigated the potential of dual-energy computed tomography image-based proton SPRs prediction accuracy to reduce the uncertainty of Bragg peak position prediction. Single- and dual-energy images of an electron density phantom (CIRS Model 062M electron density phantom, CIRS Inc., Norfolk, VA, USA) were acquired using a computed tomography system (Somatom Definition AS, Siemens Health Care, Forchheim, Germany) to estimate the SPRs of the proton beam. To validate the method, it was compared to the SPRs estimated from standard data provided by the National Institute of Standards and Technology (NIST). The results show that the dual-energy image-based method has the potential to improve accuracy in predicting the SPRs of proton beams, and it is expected that further improvements in predicting the position of the proton's Bragg peak will be possible if a wider variety of substitutes with different densities and elemental compositions of the human body are used to predict the SPRs.

The Study on Control Algorithm of Elevator EDLC Emergency Power Converter (승강기 EDLC 비상전원 전력변환장치 제어 알고리즘 연구)

  • Lee, Sang-min;Kim, IL-Song;Kim, Nam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.709-718
    • /
    • 2017
  • The installation of the elevator ARD(Automatic Rescue Device) system has been forced into law in these days in order to safely rescue passengers during power failure. The configuration of the ARD system consists of energy storage device, power converter and control systems. The EDLC(Electric Double Layer Capacitor) are used as energy storage device for rapid charge/discharge purposes. The power conditioning system (PCS) consists of bi-directional converter, 3-phase converter and control system. The dead-beat control system is adopted for most systems however it requires complex mathematical calculations, the high performance microprocessors are mandatory and thus it can be a cause of high manufacturing cost. In this paper the new control method for average current mode control is presented for simple structure. The control algorithm is applied to the single phase system and then expands to three phase system to meet the sysem requirements. The mathematical modeling using average modeling method is presented and analysed by PSIM computer simulation to verifie the validity of the proposed control methods.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Numerical analysis of deposition and channel change in the vegetation zone (식생대에서 유사의 퇴적과 하도변화 수치모의 분석)

  • Hwang, Hyo;Jang, Chang-Lae;Kang, Minseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • This study analyzed the bed load transport and channel change on the vegetation zone through laboratory experiments and numerical simulations. To examine the effect of vegetation zone in the laboratory experiment, artificial vegetation zones made of acrylic sticks were installed in the experimental channel, and discharge conditions were adjusted to examine the bed load transport and channel change in the vegetation zone. Next, numerical simulations were performed by applying the same conditions as those of the laboratory experiment to the Nays2D model, a two-dimensional numerical model, and the applicability of the numerical model was examined by comparing the results with the results of the laboratory experiment. Finally, by applying a numerical model, the bed load transport and channel change according to the change in vegetation density were examined. As a result of examining the bed load transport and channel change in the vegetation zone according to the discharge condition change by applying the laboratory experiment and the numerical model, the results of the two application methods were similar. As the discharge increased, bed load from the upper stream was deposited inside the vegetation zone. On the other hand, on the other side of the vegetation zone, the flow was concentrated and erosion occurred. Also, the range of erosion increased in the downstream direction. As a result of examining the bed load transport and channel change according to the change in vegetation density, as the vegetation density increased, the bed load from the upper stream was deposited inside the vegetation zone. On the other hand, due to the increase in vegetation density, the flow was concentrated to the opposite side of the vegetation zone, erosion occurred.

Analysis of Cloud Seeding Case Experiment in Connection with Republic of Korea Air Force Transport and KMA/NIMS Atmospheric Research Aircrafts (공군수송기와 기상항공기를 연계한 인공강우 사례실험 분석)

  • Yun-Kyu Lim;Ki-Ho Chang;Yonghun Ro;Jung Mo Ku;Sanghee Chae;Hae-Jung Koo;Min-Hoo Kim;Dong-Oh Park;Woonseon Jung;Kwangjae Lee;Sun Hee Kim;Joo Wan Cha;Yong Hee Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.12
    • /
    • pp.899-914
    • /
    • 2023
  • Various seeding materials for cloud seeding are being used, and sodium chloride powder is one of them, which is commonly used. This study analyzed the experimental results of multi-aircraft cloud seeding in connection with Republic of Korea Air Force (CN235) and KMA/NIMS(Korea Meteorological Administration/National Institute of Meteorological Sciences) Atmospheric Research Aircraft. Powdered sodium chloride was used in CN235 for the first time in South Korea. The analysis of the cloud particle size distributions and radar reflectivity before and after cloud seeding showed that the growth efficiency of powdery seeding material in the cloud is slightly higher than that of hygroscopic flare composition in the distribution of number concentrations by cloud aerosol particle diameter (10 ~ 1000 ㎛). Considering the radar reflectivity, precipitation, and numerical model simulation, the enhanced precipitation due to cloud seeding was calculated to be a maximum of 3.7 mm for 6 hours. The simulated seeding effect area was about 3,695 km2, which corresponds to 13,634,550 tons of water. In the precipitation component analysis, as a direct verification method, the ion equivalent concentrations (Na+, Cl-, Ca2+) of the seeding material at the Bukgangneung site were found to be about 1000 times higher than those of other non-affected areas between about 1 and 2 hours after seeding. This study suggests the possibility of continuous multi-aircraft cloud seeding experiments to accumulate and increase the amount of precipitation enhancement.

Analysis of Traffic Flow Based on Autonomous Vehicles' Perception of Traffic Safety Signs in Urban Roads (도시부 도로 내 자율주행차량의 교통안전표지 정보 인지 시점에 따른 교통류 분석)

  • Jongho Kim;Hyeokjun Jang;Eum Han;Eunjeong Ko
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.148-162
    • /
    • 2023
  • The objective of this study is to derive the appropriate perception location for changes in driving behavior of autonomous vehicles in urban road environments based on traffic safety signs. For this purpose, 32 types of signs that induce changes in driving behavior were selected from currently used traffic safety signs and classified as three types according to changes in driving behavior. Based on this, three scenarios were designed: stop, speed change, and lane change scenarios. These were used to confirm the impact on traffic flow. As a result of the analysis, it was found that each scenario needs to receive information on traffic safety signs in advance to ensure changes in traffic flow and safety. Consequently, the appropriate perception location can be used as a basis for establishing standards for delivering message sets to autonomous vehicles or revising traffic safety signs for them. In addition, this study is expected to contribute to the establishment of safe and efficient driving strategies on urban roads as autonomous vehicles are introduced in the future.