DOI QR코드

DOI QR Code

Heating Characteristics of Carbon Fiber Polyimide-Coated by Electrophoretic Deposition

전기영동증착법으로 폴리이미드를 코팅한 탄소섬유의 발열 특성 연구

  • Geon-Joo Jeong (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology) ;
  • Tae-Yoo Kim (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology) ;
  • Seung-Boo Jung (School of Advanced Materials Science & Engineering, Sungkyunkwan University) ;
  • Kwang-Seok Kim (Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology)
  • 정건주 (한국생산기술연구원 탄소경량소재응용연구그룹) ;
  • 김태유 (한국생산기술연구원 탄소경량소재응용연구그룹) ;
  • 정승부 (성균관대학교 신소재공학과) ;
  • 김광석 (한국생산기술연구원 탄소경량소재응용연구그룹)
  • Received : 2023.03.21
  • Accepted : 2023.03.30
  • Published : 2023.03.30

Abstract

Carbon fiber(CF) with excellent thermal conductivity and electrical conductivity is attracting attention as an alternative material because metal heating elements have problems such as high heat loss and fire risk. However, since CF is oxidized and disconnected at about 200℃ or higher, the application of heating elements is limited, and CF heating elements in the form of vacuum tubes are currently used in some commercial heaters. In this work, polyimide(PI) with high heat resistance was coated on the surface of carbon fiber by electrophoretic deposition to prevent oxidation of CF in the atmosphere without using a vacuum tube, and the coating thickness and heat resistance were investigated according to the applied voltage. The heater made by connecting the PI-coated CF heating elements in series showed stable heating characteristics up to 292℃, which was similar to the heating temperature result of the heat transfer simulation. The PI layer coated by the electrophoretic deposition method is effective in preventing oxidation of CF at 200℃ or higher and is expected to be applicable to various heating components such as secondary batteries, aerospace, and electric vehicles that require heat stability.

금속 발열체는 높은 열손실과 화재 위험성 등의 문제점이 있어 우수한 열전도도와 전기전도도 특성을 갖는 탄소섬유가 대체소재로 각광받고 있다. 그러나 탄소섬유는 약 200℃ 이상에서 산화하여 단선되기 때문에 발열체 적용이 제한적이며, 현재 진공관 형태로 탄소섬유 발열체가 일부 사용되고 있다. 본 연구에서는 진공관을 사용하지 않고 대기 중탄소섬유 산화방지를 위해 전기영동증착법으로 탄소섬유 표면에 내열성이 높은 폴리이미드를 코팅하였으며 인가전압에 따른 코팅 두께와 내열성을 확인하였다. 폴리이미드를 코팅한 탄소섬유 발열체를 직렬 연결하여 만든 히터는 최대 292℃ 까지 안정적인 발열 특성을 보였으며 이는 열전달 시뮬레이션의 발열온도 결과와 유사하였다. 전기영동증착방법으로 코팅한 폴리이미드 층은 200℃ 이상에서 탄소섬유의 산화방지에 효과적이며 발열 안정성을 요구하는 2차전지, 우주항공, 전기자동차 등 다양한 발열 부품에 적용 가능할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 전라북도 뿌리·농기계기술 고도화를 위한 인프라활용 기술개발 지원사업(UR220025)의 지원을 받아 수행한 연구결과입니다.

References

  1. Q. Wu, W. Li, C. Liu, Y. Xu, G. Li, H. Zhang, J. Huang, and J. Miao, "Carbon fiber reinforced elastomeric thermal interface materials for spacecraft", Carbon, 187, 432-438 (2022) https://doi.org/10.1016/j.carbon.2021.11.039
  2. J. Li, C. Zhu, Z. Zhao, P. Khalili, M. Clement, J. Tong, X. Liu, X. Yi, "Fire Properties of carbon fiber reinforced polymer improved by coating nonwoven flame retardant mat for aerospace application", J. Appl. Polym. Sci., 136(30), 47801 (2019)
  3. J. Li, Z. Ye, P. Mo, Y. Pang, E. Gao, C. Zhang, G. Du, R. Sun, and X. Zeng, "Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management", Compos. Sci. Technol., 234, 109948 (2023)
  4. N. L. Rock and P. N. Kumta, "Synthesis and characterization of electrochemically active graphite-silicon-tin composite anodes for Li-ion applications", J. Power Sources, 164(2), 829-838 (2007) https://doi.org/10.1016/j.jpowsour.2006.10.068
  5. Z. Wu, J. Dong, X. Li, X. Zhao, W. Tan, C. Ji, and Q. Zhang, "Tough Polyimide composites synergistically reinforced by carbon nanofiber-grafted carbon fiber and rGO for improved heat dissipation and electromagnetic interference shielding", J. Mater. Sci. Technol., 149, 225-236 (2023) https://doi.org/10.1016/j.jmst.2022.11.039
  6. A. Tugirumubano, H. Jeong, J. D. Kim, L. K. Kwac, and H. G. Kim, "Reliability evaluation of the performance of nonwoven carbon fabric for heating element applications", J. Mater. Res. Technol., 14, 2140-2149 (2021) https://doi.org/10.1016/j.jmrt.2021.07.111
  7. N. Athanasopoulos, G. Koutsoukis, D. Vlachos, and V. Kostopoulos, "Temperature uniformity analysis and development of open lightweight composite molds using carbon fibers as heating elements", Compos. Pt. B-Eng., 50, 279-289 (2013) https://doi.org/10.1016/j.compositesb.2013.02.038
  8. J. S. Jang, Y. W. Lim, D. H. Kim, D. Lee, W. T. Koo, H. Lee, B. S. Bae, and I. D. Kim, "Glass-fabric reinforced Ag nanowire/siloxane composite heater substrate: sub-10nm metal oxide nanosheet for sensitive flexible sensing platform", Small, 14(44), 1802260 (2018)
  9. H. Kim, S. Yarlagadda, J. W. Gillespie, N. B. Shevchenko, and B. K. Fink, "A study on the introduction heating of carbon fiber reinforced thermoplastic composites", Adv. Compos. Mater., 11(1), 71-80 (2002) https://doi.org/10.1163/156855102753613309
  10. A. Fosbury, S. Wang, Y. F. Pin, and D. D. L. Chung, "The interlaminar interface of a carbon fober Polymer-matrix composite as a resistance heating element", Compos. Pt. A-Appl. Sci. Manuf. 34(10), 993-940 (2003)
  11. S. Lee, D. Jang, Y. S. Chung, and S. Lee, "Cost-effective and highly efficient surface heating elements using high thermal conductive carbon fibers", Compos. Pt. A-Appl. Sci. Manuf., 137, 105992 (2020)
  12. B. Coto, P. Hallander, L. Mendizzabal, F. Pagano, H. Kling, R. Ortiz, J. Barriga, and L. Selegard, "Particle and rain erosion mechanisms on Ti/TiN multilayer PVD coatings for carbon fibre reinforced polymer substrates protection", Wear, 466-467, 203575 (2021)
  13. H. Hatta, T. Aoki, Y. Kogo, and T. Yarii, "High-temperature oxidation behavior of SiC-coated carbon fiber-reinforced carbon matrix composites", Compos. Pt. A-Appl. Sci. Manuf., 30(4), 515-520 (1999) https://doi.org/10.1016/S1359-835X(98)00143-2
  14. A. K. Roy, S. Schulze, M. Hietschold, and W. A. Goedel, "Oxidation protection of carbon fibers by coating with alumina and/or titania using atomic layer deposition", Carbon, 50(3), 761-770 (2012) https://doi.org/10.1016/j.carbon.2011.09.023
  15. A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. J. Minay, and M. S. P. Shaffer, "Electrophoretic deposition of carbon nanotubes", Carbon, 44(15), 3149-3160 (2006) https://doi.org/10.1016/j.carbon.2006.06.021
  16. S. CandraKishore and A. Pandurangan, "Electroporetic deposition of cobalt catalyst layer over stainless steel for the high yield synthesis of carbon nanotubes", Appl. Surf. Sci., 258(20), 7936-7942 (2012) https://doi.org/10.1016/j.apsusc.2012.04.138
  17. J. Tang, W. Li, and Z. Wang, "Facile synthesis of soluble, self-crosslinkable and crystalline polyimides with ultrahigh thermal/chemical resistance", Polymer, 268, 125717 (2023)
  18. J. Chen, S. Yang, Z. Tao, A. Hu, and L. Fan, "Processing and Properties of Carbon Fiber-reinforced PMR Type Polyimide Composites", High Perform. Polym., 18(3), 377-396 (2006) https://doi.org/10.1177/0954008306063395
  19. O. van der Biest, S. Put, G. Anne, J. Vleugels,"Electrophoretic deposition for coatings and free standing objects", J. Mater. Sci., 39, 779-785 (2004) https://doi.org/10.1023/B:JMSC.0000012905.62256.39
  20. S. Hu, W. Li, H. Finklea, and X. Liu, "A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells", Adv. Colloid and Interface Sci., 276, 102102 (2020)