• Title/Summary/Keyword: science problem solving

Search Result 1,847, Processing Time 0.028 seconds

Everyday science problem solving processes of high ability elementary students in science: Analysis of written responses (초등 과학 우수 학생의 일상적 맥락의 과학 문제 해결 과정: 서답형 문항에 대한 응답 분석)

  • 김찬종
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.1
    • /
    • pp.75-87
    • /
    • 1998
  • The problem solving processes of elementary school children who are talented in science have been seldom studied. Researchers often resort to thinking aloud method to collect data of problem solving processes. The major purpose of the study is investigating high ability elementary school students' problem solving processes through the analysis of written responses to science problems in everyday context. 67 elementary students were participated Chungcheongbuk-do Elementary Science Contest held on October, 1997. The written responses of the contest participants to science problems in everyday context were analyzed in terms of problem solving processes. The findings of the research are as follows. (1) High ability elementary students use various concepts about air and water in the process of problem solving. (2) High ability elementary students use content specific problem solving strategies. (3) The problem solving processes of the high ability elementary students consist of problem representation, problem solution, and answer stages. Problem representation stage is further divided into translation and integration phases. Problem solving stage is composed of deciding relevant knowledge, strategy, and info..ins phases. (4) High ability elementary students' problem solving processes could be categorized into 11 qualitatively different groups. (5) Students failures in problem solving are explained by many phases of problem solving processes. Deciding relevant knowledge and inferring phases play major roles in problem solving. (6) The analysis of students' written responses, although has some limitations, could provide plenty of information about high ability elementary students' problem solving precesses.

  • PDF

Analysis on Science Problem Solving Process of the Elementary Science Gifted Students (초등 과학 영재의 과학 문제 해결 과정 분석)

  • Lim, Cheong-Hwan;Lim, Gui-Sook
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.2
    • /
    • pp.213-231
    • /
    • 2011
  • The purpose of this study was to investigate knowledge types which the elementary science gifted students would use when solving a science problem, and to examine characteristics and types that were shown in the science problem solving process. For this study, 39 fifth graders and 38 sixth graders from Institute of Education for the Gifted Science Class were sampled in one National University of Education. The results of this study were as follows. First, for science problem solving, the elementary science gifted students used procedural knowledge and declarative knowledge at the same time, and procedural knowledge was more frequently used than declarative knowledge. Second, as for the characteristics in the understanding step of solving science problems, students tend to exactly figure out questions' given conditions and what to seek. In planning and solving stage, most of them used 3~4 different problem solving methods and strategies for solving. In evaluating stage, they mostly re-examined problem solving process for once or twice. Also, they did not correct the answer and had high confidence in their answers. Third, good solvers had used more complete or partially applied procedural knowledge and proper declarative knowledge than poor solvers. In the problem solving process, good solvers had more accurate problem-understanding and successful problem solving strategies. From characteristics shown in the good solvers' problem solving process, it is confirmed that the education program for science gifted students needs both studying on process of acquiring declarative knowledge and studying procedural knowledge for interpreting new situation, solving problem and deducting. In addition, in problem-understanding stage, it is required to develop divided and gradual programs for interpreting and symbolizing the problem, and for increasing the understanding.

The Effect of Using Digital Science Textbook on the Scientific Problem Solving of Elementary School Students (초등과학 디지털 교과서 활용이 학생들의 과학적 문제 해결력에 미치는 영향)

  • Choi, Sun-Young;Seo, Jeong-Hee
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.2
    • /
    • pp.132-141
    • /
    • 2009
  • The purpose of this research was to investigate the effect of using digital science textbook on the scientific problem solving of elementary school students. For this research, an instrument to measure student's problem-solving skills was developed. The pretest and posttest scores of one hundred and six 5th grade students' problem-solving skills were analyzed and also the responses of three students who were selected by their levels in the problem-solving science digital textbook class were qualitatively analyzed. The results of this study were as follows; the scores of problem solving skills of science digital textbook groups were higher than that of traditional paper textbook group(p<.05). In the qualitative analysis of the students' reponses in a digital textbook class according to their achievement level, low-achievers' problem-solving skills were much more improved than high- and mid-achievers' skills. In conclusion, science digital textbook has a potential to improve students' scientific problem solving skills, and this possibility will be much higher when science digital textbook is used with teachers' intended instructional goals and strategies like problem-solving lessons.

  • PDF

The Relationship between Creative Problem Solving in Science and Cognitive Strategies in Elementary School Students (초등학교 아동의 과학 창의적 문제 해결과 인지 전략과의 관계)

  • Lee, Hye-Joo
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.3
    • /
    • pp.286-294
    • /
    • 2007
  • This study investigated the relationship between elementary school students' creative problem solving skills in terms of science and cognitive strategies. Creative problem solving in science was measured by 4 variables; appropriateness, scientific ability, concreteness, and originality. Cognitive strategies were measured by 6 variables; surface(rehearsal), deep(elaboration and organization), and metacognitive strategies(planning, monitoring, and regulating). The KEDI Creative Problems Solving Test in Science(Cho et al., 1997) and the Motivated Strategies for Learning Questionnaire(Pintrich & DeGroot, 1990) were administered to 72 subjects. Data were analyzed by means of Pearson's correlation and multiple regression analysis. Our findings indicated a positive correlation between creative problem solving in science and cognitive strategies. The surface cognitive strategy (rehearsal) positively predicted the total score, the scientific ability's score, the concrete score, and the original score of creative problem solving in science. The deep cognitive strategy(organization) positively predicted the appropriate score and the metacognitive strategy(planning) positively predicted the original score of scientific creative problem solving skills.

  • PDF

Development and Application of Teaching Strategy Focused on Problem Solving Process in the 'Separation of Mixture' Unit of Third Grade Elementary School (초등학교 3학년 '혼합물의 분리' 단원에서 문제해결 과정을 강조한 수업 전략 개발 및 적용)

  • Lee, Shin Hyun;Choi, Sun-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • The purpose of this study was to develop a teaching strategy focused on problem solving process and explore its effects on science creative problem solving ability, science process skills, science academic achievements and scientific attitudes of students after applying it. Teaching strategy focused on problem solving process employed brainstorming and PMI thinking strategies. The participants were the third grade students of both an experimental class(26 students) and a comparative class(25 students) at the S elementary school located in Goyang-City, Kyonggi Province. The developed strategy was applied to the experimental class for 9 periods of 'Separation of mixture' unit. The results of the tests on the science creative problem solving ability, the science process skills, scientific achievement and scientific attitude were statistically higher in the experimental class.

Factors Affecting Earth Science Problem-Solving Performances of Elementary School Pre-service Teachers: A Study on the Motions of the Moon and the Planets

  • Myeong, Jeon-Ok
    • Journal of the Korean earth science society
    • /
    • v.23 no.2
    • /
    • pp.180-187
    • /
    • 2002
  • The aim of this study was to investigate the factors affecting earth science problem-solving performances of elementary school pre-service teachers. The participants of the study were 81 students attending an elementary school teacher education university. The instruments of the study were paper-and-pencil tests, questionnaires, and interviews. The tests mainly measured the participants' problem solving abilities in the motions of the moon and the planets. Correlation and multiple regression techniques were used for data analysis. The results demonstrated that the pre-service teachers' problem solving abilities were low. Problem-solving performances were affected by the procedural knowledge, the participants' perception of the past earth science performance, self-efficacy, and the prerequisite declarative knowledge. Contrary to our expectation, the spatial visualization ability was not found to be related to the problem-solving performances. Implications of the study are drawn, and suggestions are made for further research.

Gender Characteristics in Elementary Science Problem Solving Process (초등 과학 문제 풀이 과정에서의 성별 특성)

  • Shin, Dong-Hee;Park, Byung-Tai
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.3
    • /
    • pp.229-244
    • /
    • 2009
  • This study was initiated to investigate sixth graders' gender characteristics in science problem solving process and thus find out the proper learning and teaching strategies for each gender. A total of 14 students, each of seven male and female students, were selected through three tests, including items of science knowledge, science inquiry, and creativity. Students were required to solve 26 items and to think aloud for researchers help understand how they thought in their problem solving process. Males and females showed some similarity and difference in four steps of problem solving process, understanding, planning, solving, and reviewing. We found gender differences in self-confidence of their answer. This study is expected to help develop teachers' differential teaching strategy for male and female students' science problem solving.

  • PDF

Enhancing the Creative Problem Solving Skill by Using the CPS Learning Model for Seventh Grade Students with Different Prior Knowledge Levels

  • Cojorn, Kanyarat;Koocharoenpisal, Numphon;Haemaprasith, Sunee;Siripankaew, Pramuan
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.8
    • /
    • pp.1333-1344
    • /
    • 2012
  • This study aimed to enhance creative problem solving skill by using the Creative Problem Solving (CPS) learning model which was developed based on creative problem solving approach and five essential features of inquiry. The key strategy of the CPS learning model is using real life problem situations to provide students opportunities to practice creative problem solving skill through 5 learning steps: engaging, problem exploring, solutions creating, plan executing, and concepts examining. The science content used for examining the CPS learning model was "matter and properties of matter" that consists of 3 learning units: Matter, Solution, and Acid-Base Solution. The process to assess the effectiveness of the learning model used the experimental design of the Pretest-Posttest Control-Group Design. Seventh grade-students in the experimental group learned by the CPS learning model. At the same time, students at the same grade level in the control group learned by conventional learning model. The learning models and students' prior knowledge levels were served as the independent variables. The creative problem solving skill was classified in to 4 aspects in: fluency, flexibility, originality, and reasoning. The results indicated that in all aspects, the students' mean scores of creative problem solving between students in experimental group and control group were significantly different at the .05 level. Also, the progression of students' creative problem solving skills was found highly progressed at the later instructional periods. When comparing the creative problem solving scores between groups of students with different levels of prior knowledge, the differences of their creative problem solving scores were founded at .05 level. The findings of this study confirmed that the CPS learning model is effective in enhancing the students' creative problem solving skill.

Feedback Order and Problem-Solving Experience in Competitive Problem-Solving : An Empirical Analysis of Online Innovation Contests (경쟁적 문제 해결 과정에서 피드백 순서와 문제 해결 경험 : 온라인 혁신 경진 대회의 실증 분석)

  • Mun, Hee Jin;Chung, Yerim;Park, Kyung Min
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.1
    • /
    • pp.29-44
    • /
    • 2013
  • This study suggests that as receiving feedback is moved back, the effectiveness of problem-solving increases. Utilizing data from innovation contests in which a number of problem solvers compete with each other, we answer questions such as whether the order of receiving first feedback affects problem-solving effectiveness and how problem-solving experience moderates the relationship between the first feedback order and problem-solving effectiveness. Empirical results based on data collected from Kaggle, an online platform for innovation contests, showed that the order that contest participants receive the first feedback increases problem-solving effectiveness. Furthermore, the more prior experience of contest participants accentuates the suggested relationship between the order of receiving the first feedback and problem-solving effectiveness.

The Relationships between Children's Science Aptitude, Creativity, and Scientific Creative Problem Solving Abilities (아동의 과학 적성, 창의성, 과학 창의적 문제 해결력간의 관계)

  • Kim, Hye-Soon;Kang, Gi-Sook
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.1
    • /
    • pp.32-40
    • /
    • 2007
  • The scientific creativity problem solving ability of children has been greatly emphasized in recent years, because it has been regarded as an example of highly developed reasoning and thinking skills. This study aimed to identify the relationships between scientific aptitude, creativity, and scientific creative problem solving abilities in children. The subjects were 100 5th graders residing in Seoul and a small city in Choongnam. Data was analyzed by t-test and by correlation using spss program packages. The main results of this study were as follows: first, a significant difference was found in the scientific creative problem solving ability of children by their respective levels of science aptitude. Secondly, the scientific creative problem solving ability of the children by their levels of creativity was found to be insignificant. Thirdly, no significant difference was found between creativity and scientific creative problem solving ability among the children examined; however there was a significant difference found between the science aptitude and scientific-creative problem solving ability and between science aptitude and creativity in the children who participated in this study.

  • PDF