• Title/Summary/Keyword: science exploration

Search Result 1,268, Processing Time 0.026 seconds

Expression patterns of TRα and CRABPII genes in Chinese cashmere goat skin during prenatal development

  • Zhong, Tao;Zhao, Wei;Zhou, Zhongqiang;Li, Li;Wang, Linjie;Li, Hua;Zhang, Hongping
    • Journal of Animal Science and Technology
    • /
    • v.57 no.8
    • /
    • pp.28.1-28.7
    • /
    • 2015
  • Background: The physiologic characteristics of the cashmere trait and many of the differentially expressed genes relevant to hair cycling have been extensively studied, whereas genes involved in the prenatal development of hair follicles have been poorly investigated in cashmere goats. The aim of this study, therefore, was to quantify the time-course changes in the expressions of $TR{\alpha}$ and CRABPII genes in the fetal skin of Chinese cashmere goats at the multiple embryonic days (E70, E75, E80, E90, E100, E120 and E130) using real-time quantitative PCR (RT-qPCR). Results: RT-qPCR showed that $TR{\alpha}$ was expressed at E70 with relatively high level and then slightly decreased (E75, E80, and E90). The highest expression of $TR{\alpha}$ mRNA was revealed at E130 (P > 0.05). The expression pattern of CRABPII mRNA showed an 'up-down-up' trend, which revealed a significantly highest expression at E75 (P < 0.05) and was down-regulated during E80 to E120 (P < 0.05) and mildly increased at E130, subsequently. Conclusion: This study demonstrated that $TR{\alpha}$ and CRABPII genes expressed in different levels during prenatal development of cashmere. The present study will be helpful to provide the comprehensive understanding of $TR{\alpha}$ and CRABPII genes expressions during cashmere formation and lay the ground for further studies on their roles in regulation of cashmere growth in goats.

A cosmic ray muons tomography system with triangular bar plastic scintillator detectors and improved 3D image reconstruction algorithm: A simulation study

  • Yanwei Zhao;Xujia Luo;Kemian Qin;Guorui Liu;Daiyuan Chen;R.S. Augusto;Weixiong Zhang;Xiaogang Luo;Chunxian Liu;Juntao Liu;Zhiyi Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.681-689
    • /
    • 2023
  • Purpose: Muons are characterized by a strong penetrating ability and can travel through thousands of meters of rock, making them ideal to image large volumes and substances typically impenetrable to, for example, electrons and photons. The feasibility of 3D image reconstruction and material identification based on a cosmic ray muons tomography (MT) system with triangular bar plastic scintillator detectors has been verified in this paper. Our prototype shows potential application value and the authors wish to apply this prototype system to 3D imaging. In addition, an MT experiment with the same detector system is also in progress. Methods: A simulation based on GEANT4 was developed to study cosmic ray muons' physical processes and motion trails. The yield and transportation of optical photons scintillated in each triangular bar of the detector system were reproduced. An image reconstruction algorithm and correction method based on muon scattering, which differs from the conventional PoCA algorithm, has been developed based on simulation data and verified by experimental data. Results: According to the simulation result, the detector system's position resolution is below 1 ~ mm in simulation and 2 mm in the experiment. A relatively legible 3D image of lead bricks in size of 20 cm × 5 cm × 10 cm used our inversion algorithm can be presented below 1× 104 effective events, which takes 16 h of acquisition time experimentally. Conclusion: The proposed method is a potential candidate to monitor the cosmic ray MT accurately. Monte Carlo simulations have been performed to discuss the application of the detector and the simulation results have indicated that the detector can be used in cosmic ray MT. The cosmic ray MT experiment is currently underway. Furthermore, the proposal also has the potential to scan the earth, buildings, and other structures of interest including for instance computerized imaging in an archaeological framework.

SURVEY OF DUSTY ACTIVE GALACTIC NUCLEI BASED ON THE MID-INFRARED ALL-SKY SURVEY CATALOG

  • Oyabu, S.;Ishihara, D.;Yamada, R.;Kaneda, H.;Yamagishi, M.;Toba, Y.;Matsuhara, H.;Nakagawa, T.;Malkan, M.;Shirahata, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • Many observations have found evidence of the presence of a large number of heavily obscured Active Galactic Nuclei (AGNs). However, the nature of this population is only poorly understood because heavy obscuration by dust prevents one from finding them at optical wavelengths. Mid-infrared AGN searches can overcome this obstacle by penetrating through dust and by detecting direct emission from the dust torus. Thus, we can identify most of the AGN population, including type-2 and buried AGNs. Using the AKARI mid-infrared all-sky survey, we performed an AGN search in the nearby universe. Utilizing the 2MASS photometry, we selected mid-infrared-excess sources and carried out near-infrared spectroscopic observations in the AKARI Phase 3. During these follow-up observations, we have found three galaxies that show strong near-infrared red continuum from hot dust with a temperature of about 500 K, but do not show any AGN features in other wavelengths. The most suitable explanation of near-infrared continuum is the presence of central AGNs. Therefore, we conclude that they are AGNs obscured by dust. We performed X-ray observations of the two galaxies with SUZAKU. No detections in the 0.4-10 keV suggest that the column density may be much higher than $N_H=10^{23.5}cm^{-2}$. Comparing the masses of the host galaxies with those of the SDSS AGNs, we find that the host galaxies of the dusty AGNs discovered with AKARI are less massive populations than those of optically selected AGNs.

The Role and Importance of Gesture in Science Exploration (과학 탐구에서 몸짓의 역할과 중요성)

  • Han Jae young;Choi Jung hoon;Shin Young Joo;Son Jeong woo;Cha Jeong Ho;Hong Jun Euy
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The language and the gestures of a teacher, generally, have a great influence on the effect of a lesson. This is because subject content is transferred to students by teachers' language and gestures. In the science lessons which focus on experiments, the language and gestures of both students and teachers will help the learning of scientific content. However, the role of gestures, despite its importance, has rarely been investigated in science education research. The role of gestures of students and teachers is a much needed area of study. This study investigated the gestures observed in the experimental process performed by students who participated in a science exploration activity. Students' gestures play an essential role in the successful performance of the experiment. and they could function as a process of solving the contradictory situation. In addition, the demonstration and the communication of gestures should be performed very cautiously. There were a number of implications for the long-standing problem of the relation between the understanding of science concepts and the performance of experiments.

  • PDF

Investigation Study on Underground Cavity Scale Estimation Based on GPR Exploration (지하공동 규모 평가를 위한 GPR 탐사 기반의 조사 연구)

  • Byoung-Jo Yoon;Han-Joo Lim;Yeon-Gyu Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.737-746
    • /
    • 2023
  • Purpose: Ground subsidence due to cavity can bring about various problems, such as casualties, decrease of the safety of the structures, and indirect social costs. Therefore, ground subsidence should be prevented through the exploration and recovery of the cavity under the pavements. Method: In this study, GPR exploration method was carried out on both actual roadway and mock-up site to compensate for the problems caused by excavation and restoration process. Result: This study compared the cavity scales obtained from GPR exploration results and the direct excavation of the identified cavity. It was confirmed that the predicted soil depth by GPR exploration was similar to the identified soil depth, but the predicted cavity scale by GPR exploration overestimated the longitudinal and cross-sectional widths compared to the identified cavity scale. Conclusion: Based on the correlation between the predicted cavity scales by GPR exploration, it is possible to qualitatively estimate the cavity scales using the empirical formula proposed in this study.

A Breakthrough in Sensing and Measurement Technologies: Compressed Sensing and Super-Resolution for Geophysical Exploration (센싱 및 계측 기술에서의 혁신: 지구물리 탐사를 위한 압축센싱 및 초고해상도 기술)

  • Kong, Seung-Hyun;Han, Seung-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.335-341
    • /
    • 2011
  • Most sensing and instrumentation systems should have very higher sampling rate than required data rate not to miss important information. This means that the system can be inefficient in some cases. This paper introduces two new research areas about information acquisition with high accuracy from less number of sampled data. One is Compressed Sensing technology (which obtains original information with as little samples as possible) and the other is Super-Resolution technology (which gains very high-resolution information from restrictively sampled data). This paper explains fundamental theories and reconstruction algorithms of compressed sensing technology and describes several applications to geophysical exploration. In addition, this paper explains the fundamentals of super-resolution technology and introduces recent research results and its applications, e.g. FRI (Finite Rate of Innovation) and LIMS (Least-squares based Iterative Multipath Super-resolution). In conclusion, this paper discusses how these technologies can be used in geophysical exploration systems.

Calibration of ShadowCam

  • David Carl Humm;Mallory Janet Kinczyk;Scott Michael Brylow;Robert Vernon Wagner;Emerson Jacob Speyerer;Nicholas Michael Estes;Prasun Mahanti;Aaron Kyle Boyd;Mark Southwick Robinson
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.173-197
    • /
    • 2023
  • ShadowCam is a high-sensitivity, high-resolution imager provided by NASA for the Danuri (KPLO) lunar mission. ShadowCam calibration shows that it is well suited for its purpose, to image permanently shadowed regions (PSRs) that occur near the lunar poles. It is 205 times as sensitive as the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC). The signal to noise ratio (SNR) is greater than 100 over a large part of the dynamic range, and the top of the dynamic range is high enough to accommodate most brighter PSR pixels. The optical performance is good enough to take full advantage of the 1.7 meter/pixel image scale, and calibrated images have uniform response. We describe some instrument artifacts that are amenable to future corrections, making it possible to improve performance further. Stray light control is very challenging for this mission. In many cases, ShadowCam can image shadowed areas with directly illuminated terrain in or near the field of view (FOV). We include thorough qualitative descriptions of circumstances under which lunar brightness levels far higher than the top of the dynamic range cause detector or stray light artifacts and the size and extent of the artifact signal under those circumstances.

Analysis of effectiveness of solar system internet to deep space exploration (태양계 인터넷이 심우주 탐사에 미치는 영향 분석)

  • Koo, Cheolhea;Kim, Changkyun;Rew, Dongyoung;Choi, Gihyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.240-246
    • /
    • 2016
  • The hottest news and achievements of space science and research in recent years may be NASA Curiosity rover's exploration (2013) of Mars, China Chang'e 3's exploration (2013) of Moon, ESA Rosetta's exploration (2014) of Comet 67P/Churyumov-Gerasimenko, and NASA New Horizons' exploration (2015) of Pluto, which are very astonishing achievement since such a deep space journey was possible with current technology. In contrast the wonderful cruise and navigation technologies evolution of explorer in deep space, there are no remarkable changes in deep space data communication, it is still in conservative area, of which much changes are reluctantly accepted so far. But there are some movements of deep space exploration in order to allow ground brilliant technologies to deep space. One of those experiments is internet, whose main topic of this paper. In this paper, we will present the analysis of effectiveness of solar system internet to deep space exploration.

THE 18 ㎛ LUMINOSITY FUNCTION OF GALAXIES WITH AKARI

  • Toba, Yoshiki;Oyabu, Shinki;Matsuhara, Hideo;Ishihara, Daisuke;Malkan, Matt;Wada, Takehiko;Ohyama, Youichi;Kataza, Hirokazu;Takita, Satoshi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.335-338
    • /
    • 2012
  • We present the $18{\mu}m$ luminosity function (LF) of galaxies at 0.006 < z < 0.8 (the average redshift is ~ 0.04) using the AKARI mid-infrared All-Sky Survey catalogue. We have selected 243 galaxies at $18{\mu}m$ from the Sloan Digital Sky Survey (SDSS) spectroscopic region. These galaxies then have been classified into five types; Seyfert 1 galaxies (Sy1, including quasars), Seyfert 2 galaxies (Sy2), low ionization narrow emission line galaxies (LINER), galaxies that are likely to contain both star formation and Active Galactic Nuclei (AGN) activities (composites), and star forming galaxies (SF) using optical emission lines such as the line width of $H{\alpha}$ or the emission line ratios of [OIII]/$H{\beta}$ and [NII]/$H{\alpha}$. As a result of constructing the LF of Sy1 and Sy2, we found the following results; (i) the number density ratio of Sy2 to Sy1 is $1.64{\pm}0.37$, larger than the results obtained from optical LF and (ii) the fraction of Sy2 in the entire AGN population may decrease with $18{\mu}m$ luminosity. These results suggest that most of the AGNs in the local universe are obscured by dust and the torus structure probably depends on the mid-infrared luminosity.

NEP-AKARI: EVOLUTION WITH REDSHIFT OF DUST ATTENUATION IN 8 ㎛ SELECTED GALAXIES

  • Buat, V.;Oi, N.;Burgarella, D.;Malek, K.;Matsuhara, H.;Murata, K.;Serjeant, S.;Takeuchi, T.T.;Malkan, M.;Pearson, C.;Wada, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.257-261
    • /
    • 2017
  • We built a $8{\mu}m$ selected sample of galaxies in the NEP-AKARI field by defining 4 redshift bins with the four AKARI bands at 11, 15, 18 and 24 microns (0.15 < z < 0.49, 0.75 < z < 1.34, 1.34 < z < 1.7 and 1.7 < z < 2.05). Our sample contains 4079 sources, 599 are securely detected with Herschel/PACS. Also adding ultraviolet (UV) data from GALEX, we fit the spectral energy distributions using the physically motivated code CIGALE to extract the star formation rate, stellar mass, dust attenuation and the AGN contribution to the total infrared luminosity ($L_{IR}$). We discuss the impact of the adopted attenuation curve and that of the wavelength coverage to estimate these physical parameters. We focus on galaxies with a luminosity close the characteristic $L^*_{IR}$ in the different redshift bins to study the evolution with redshift of the dust attenuation in these galaxies.