• 제목/요약/키워드: science, artificial intelligence

검색결과 1,482건 처리시간 0.028초

R 매핑을 이용한 인공지능의 교육적 활용 탐색 -국외 문헌 분석을 중심으로- (Exploring the Educational Use of Artificial Intelligence based on R mapping - Focusing on Foreign Publication Analysis Results -)

  • 김형욱;문성윤
    • 정보교육학회논문지
    • /
    • 제24권4호
    • /
    • pp.313-325
    • /
    • 2020
  • 최근의 혁신적 기술 진보를 배경으로 지능정보사회의 핵심기술인 머신러닝, 딥러닝을 비롯한 인공지능 기술이 비약적으로 발전하면서 인공지능의 교육적 활용에 대한 관심과 필요성이 높아지고 있다. 이에 교육부에서도 인공지능 기술에 기반한 지능정보사회를 대비하여 인공지능 역량 강화 교육을 교육 현장에 도입하는 제 1차 정보교육 종합계획을 발표하였다. 이에 본 연구에서는 인공지능의 교육적 활용 가능성을 탐색하기 위해 Web of Science(WoS)에서 인공지능의 교육적 활용과 관련된 국외 논문 416편의 자료를 수집하였다. 수집한 자료를 대상으로 R 프로그램의 bibliometrix 패키지를 활용하여 국가별 연구현황과 연구 주제, 인용횟수, 저자 등록 키워드 네트워크 분석을 실시하였다. 이를 통해 현재 해외에서 이루어지는 있는 인공지능의 교육적 활용에 대한 연구 동향을 알 수 있었다. 본 연구의 결과를 토대로 인공지능 역량 강화 교육을 위한 정보교육 과정에서 연구되어야 할 주제와 방향성에 대한 시사점 얻을 수 있을 것으로 보인다.

텍스트 마이닝을 이용한 인공지능 활용 신약 개발 연구 동향 분석 (Analysis of Research Trends in New Drug Development with Artificial Intelligence Using Text Mining)

  • 남재우;김영준
    • 생명과학회지
    • /
    • 제33권8호
    • /
    • pp.663-679
    • /
    • 2023
  • 본 리뷰 논문은 2010년부터 2022년까지의 인공지능을 활용한 신약개발 관련 연구동향을 분석하여 정리하였다. 이러한 분석을 통해 2,421개 연구의 초록을 코퍼스로 구성하고, 전처리를 거쳐 빈도가 높고 연결 중심성이 높은 단어를 추출하였다. 분석 결과 2010-201년과 2020-2022년 단어빈도 추이는 비슷한 것으로 구분되어 나타났다. 연구 방법으로는 2010년부터 2020년까지 머신 러닝을 활용한 연구가 많이 진행되었고, 2021년부터는 딥러닝을 활용한 연구가 증가하고 있다. 이러한 연구를 통해 이루어지고 있는 인공지능 활용연구 동향에 대해 분야별로 살펴보고 관련 연구의 장점, 문제점, 도전과제 등을 살펴보았다. 파악되어진 연구 동향은 2021년 이후로 약물의 재배치를 인공지능 활용 연구, 항암제 개발을 위한 컴퓨터 활용 연구, 임상시험에 인공지능 적용 연구 등과 같이 인공지능 적용 분야가 확대되고 있다는 점이다. 이러한 과정을 통해 향후 이루어질 것으로 예상되는 인공지능 활용 신약개발 연구의 전망에 대해 간략히 제시하였다. 위의 인공지능 기술 발전과 함께 바이오와 의료데이터의 신뢰성과 안전성이 확보되어진다면 인공지능 활용 신약개발의 방향이 개인 맞춤형 의료와 정밀의료 분야로 진행되어질 것으로 판단하기에 이에 대한 지속적인 노력이 필요하리라 본다.

파이썬과 로봇을 활용한 인공지능(AI) 교육 프로그램 개발 (Development of Artificial Intelligence Instructional Program using Python and Robots)

  • 유인환;전재천
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.369-376
    • /
    • 2021
  • 인공지능(AI) 기술의 발전에 따라 많은 분야에서 인공지능 활용 방안에 대한 논의가 활발하게 일어나고 있으며 교육 분야에서도 인공지능 인재 양성을 위한 각종 정책이 추진되고 있다. 본 연구에서는 인공지능 기술을 활용한 로봇 프로그래밍 프레임워크를 제안하고 이를 기반으로 머신러닝(Machine Learning) 분야에서 높은 빈도로 활용되는 파이썬(Python)과 교육 현장의 활용도가 높은 교육용 로봇을 활용하여 인공지능(AI) 교육 프로그램을 제안하였다. 국제자동차공학회(SAE)에서 제시하는 자율주행자동차 수준(0~5단계)을 4단계로 단순화하고 이를 기반으로 로봇에 부착된 카메라가 선(객체)을 인지(Perception)하고 검출(Object detection)하여 스스로 움직일 수 있는 라인 디텍터(Line Detector)를 만드는 것을 목표로 하였다. 개발된 프로그램은 단순히 특정 프로그래밍 언어를 활용하여 주어진 문제를 해결하는 정형화된 형태가 아니라 생활 속의 복잡하고 비구조화된 문제를 자기주도적으로 정의하고 인공지능(AI) 기술을 기반으로 해결하는 경험을 가지는데 그 의의가 있다.

  • PDF

선박설계에 있어서 인공지능의 응용에 관하여 (On the Application of Artificial Intelligence to Ship Design)

  • 이동곤
    • 대한조선학회지
    • /
    • 제25권1호
    • /
    • pp.56-62
    • /
    • 1988
  • Artificial Intelligence(AI) is that branch of computer science that deals with designing computer system that exhibit some of the characteristics associated with intelligence on human behaviors such as, understanding natural language, reasoning, solving problems, robotics and so on. The most developed component of artificial intelligence today is probably the expert system. An expert system is defined as a computer program that embodies organized knowledge concerning some specific domain of human expertise and programmed to perform convincingly as an advisory consultant in the given domain with self-explanation of reasoning on demand. This paper describes general concept of artificial intelligence and expert system and investigates applicability of expert system to ship design.

  • PDF

Using artificial intelligence to solve a smart structure problem

  • Kaiwen, Liu;Jun, Gao;Ruizhe, Qiu
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.393-406
    • /
    • 2023
  • Smart structures are those structure that could adopt some behavior to prevent instability in their responses. The recognition of stability deterioration has been performed through rigid mathematical formulations in control theory and unpredicted results could not be addressed in control systems since they are able to only work under their predefined condition. On the other hand, incorporating all affecting parameters could result in high computational cost and delay time in the response of the systems. Artificial intelligence (AI) method has shown to be a promising methodology not only in the computer science by at everyday life and in engineering problems. In the present study, we exploit the capabilities of artificial intelligence method to obtain frequency response of a smart structure. In this regard, a comprehensive development of equations is presented using Hamilton' principle and first order shear deformation theory. The equations were solved by numerical methods and the results are used to train an artificial neural network (ANN). It is demonstrated that ANN modeling could provide accurate results in comparison to the numerical solutions and it take less time than numerical solution.

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.

알고리즘에 의한 음악의 작곡 (Algorithmic music composition)

  • 윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.652-655
    • /
    • 1997
  • An exploration for an intelligence paradigm has been delineated. Artificial intelligence and artificial life paradigms seem to fail to show the whole picture of human intelligence. We may understand the human intelligence better by adding the emotional part of human intelligence to the intellectual part of human intelligence. Emotional intelligence is investigated in terms of composing machine as a modern abstract art. Various algorithmic composition and performance concepts are currently being investigated and implemented. Intelligent mapping algorithms restructure the traditional predetermined composition algorithms. Music based on fractals and neural networks is being composed. Also, emotional intelligence and aesthetic aspects of Korean traditional music are investigated in terms of fractal relationship. As a result, this exploration will greatly broaden the potentials of the intelligence research. The exploration of art in the view of intelligence, information and structure will restore the balanced sense, of art and science which seeks happiness in life. The investigations of emotional intelligence will establish the foundations of intelligence, information and control technologies.

  • PDF

A Systematic Mapping Study on Artificial Intelligence Tools Used in Video Editing

  • Bieda, Igor;Panchenko, Taras
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.312-318
    • /
    • 2022
  • From the past two eras, artificial intelligence has gained the attention of researchers of all research areas. Video editing is a task in the list that starts leveraging the blessing of Artificial Intelligence (AI). Since AI promises to make technology better use of human life although video editing technology is not new yet it is adopting new technologies like AI to become more powerful and sophisticated for video editors as well as users. Like other technologies, video editing will also be facilitated by the majestic power of AI in near future. There has been a lot of research that uses AI in video editing, yet there is no comprehensive literature review that systematically finds all of this work on one page so that new researchers can find research gaps in that area. In this research we conducted a statically approach called, systematic mapping study, to find answers to pre-proposed research questions. The aim and objective of this research are to find research gaps in our topic under discussion.

Performance analysis of SWIPT-assisted adaptive NOMA/OMA system with hardware impairments and imperfect CSI

  • Jing Guo;Jin Lu;Xianghui Wang;Lili Zhou
    • ETRI Journal
    • /
    • 제45권2호
    • /
    • pp.254-266
    • /
    • 2023
  • This paper investigates the effect of hardware impairments (HIs) and imperfect channel state information (ICSI) on a SWIPT-assisted adaptive nonorthogonal multiple access (NOMA)/orthogonal multiple access (OMA) system over independent and nonidentical Rayleigh fading channels. In the NOMA mode, the energy-constrained near users act as a relay to improve the performance for the far users. The OMA transmission mode is adopted to avoid a complete outage when NOMA is infeasible. The best user selection scheme is considered to maximize the energy harvested and avoid error propagation. To characterize the performance of the proposed systems, closed-form and asymptotic expressions of the outage probability for both near and far users are studied. Moreover, exact and approximate expressions of the ergodic rate for near and far users are investigated. Simulation results are provided to verify our theoretical analysis and confirm the superiority of the proposed NOMA/OMA scheme in comparison with the conventional NOMA and OMA protocol with/without HIs and ICSI.