DOI QR코드

DOI QR Code

Performance analysis of SWIPT-assisted adaptive NOMA/OMA system with hardware impairments and imperfect CSI

  • Jing Guo (School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology) ;
  • Jin Lu (School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology) ;
  • Xianghui Wang (School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology) ;
  • Lili Zhou (School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology)
  • Received : 2021.11.23
  • Accepted : 2022.04.18
  • Published : 2023.04.20

Abstract

This paper investigates the effect of hardware impairments (HIs) and imperfect channel state information (ICSI) on a SWIPT-assisted adaptive nonorthogonal multiple access (NOMA)/orthogonal multiple access (OMA) system over independent and nonidentical Rayleigh fading channels. In the NOMA mode, the energy-constrained near users act as a relay to improve the performance for the far users. The OMA transmission mode is adopted to avoid a complete outage when NOMA is infeasible. The best user selection scheme is considered to maximize the energy harvested and avoid error propagation. To characterize the performance of the proposed systems, closed-form and asymptotic expressions of the outage probability for both near and far users are studied. Moreover, exact and approximate expressions of the ergodic rate for near and far users are investigated. Simulation results are provided to verify our theoretical analysis and confirm the superiority of the proposed NOMA/OMA scheme in comparison with the conventional NOMA and OMA protocol with/without HIs and ICSI.

Keywords

Acknowledgement

This research was supported by the National Natural Science Foundation of China under Grants 61801281 and 62171265.

References

  1. Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, System-level performance evaluation of downlink non-orthogonal multiple access (NOMA), (System-level performance evaluation of downlink non-orthogonal multiple access, London, UK), 2013, pp. 611-615.
  2. Z. Ding, Z. Yang, P. Fan, and H. V. Poor, On the performance of non-orthogonalmultiple access in 5G systems with randomly deployed users, IEEE Signal Process. Lett. 21 (2014), no. 12, 1501-1505. https://doi.org/10.1109/LSP.2014.2343971
  3. Z. Ding, M. Peng, and H. V. Poor, Cooperative non-orthogonal multiple access in 5G systems, IEEE Commun. Lett. 19 (2015), no. 8, 1462-1465. https://doi.org/10.1109/LCOMM.2015.2441064
  4. T. Manimekalai, S. Joan, and T. Laxmikandan, Throughput maximization for underlay CR multicarrier NOMA network with cooperative communication, ETRI J. 42 (2020), no. 6, 846-858. https://doi.org/10.4218/etrij.2019-0265
  5. L. R. Varshney, Transporting information and energy simultaneously, (Proc. IEEE International Symposium on Information Theory, Toronto, Canada), 2008, pp. 1612-1616.
  6. A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, Relaying protocols for wireless energy harvesting and information processing, IEEE Trans. Wirel. Commun. 12 (2013), no. 7, 3622-3636. https://doi.org/10.1109/TWC.2013.062413.122042
  7. Y. Xu, S. Chao, Z. Ding, X. Sun, Y. Shi, Z. Gang, and Z. Zhong, Joint beamforming and power splitting control in downlink cooperative SWIPT NOMA systems, IEEE Trans. Signal Process. 65 (2017), no. 18, 4874-4886. https://doi.org/10.1109/TSP.2017.2715008
  8. A. K. Shukla, S. Vibhum, P. Upadhyay, A. Kumar, and J. Moualeu, Performance analysis of energy harvesting-assisted overlay cognitive NOMA systems with incremental relaying, IEEE Open J. Commun. Soc. 2 (2021), 1558-1576. https://doi.org/10.1109/OJCOMS.2021.3093671
  9. Z. Chen, Z. Ding, X. Dai, and R. Zhang, An optimization perspective of the superiority of 5G NOMA compared to conventional OMA, IEEE Trans. Signal Process. 65 (2017), 5191-5202. https://doi.org/10.1109/TSP.2017.2725223
  10. W. Shin, M. Vaezi, B. Lee, D. Love, J. Lee, and H. V. Poor, Nonorthogonal multiple access in multi-cell networks: Theory, performance, and practical challenges, IEEE Commun. Mag. 55 (2016), no. 10, 176-183.
  11. Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, Cooperative nonorthogonal multiple access with simultaneous wireless information and power transfer, IEEE J. Sel. Areas Commun. 34 (2016), no. 4, 938-953. https://doi.org/10.1109/JSAC.2016.2549378
  12. N. Nomikos, T. Charalambous, D. Vouyioukas, G. K. Karagiannidis, and R. Wichman, Hybrid NOMA/OMA with buffer-aided relay selection in cooperative networks, IEEE J. Sel. Top. Signal Process. 13 (2019), no. 4, 938-953.
  13. E. Costa and S. Pupolin, M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise, IEEE Trans. Commun. 50 (2002), no. 3, 462-472. https://doi.org/10.1109/26.990908
  14. S. Solanki, V. Singh, and P. K. Upadhyay, RF energy harvesting in hybrid two-way relaying systems with hardware impairments, IEEE Trans. Vehic. Technol. 68 (2019), no. 12, 11792-11805. https://doi.org/10.1109/TVT.2019.2944248
  15. X. Li, J. Li, Y. Liu, Z. Ding, and A. Nallanathan, Residual transceiver hardware impairments on cooperative NOMA networks, IEEE Trans. Wirel. Commun. 19 (2020), no. 1, 680-695. https://doi.org/10.1109/TWC.2019.2947670
  16. D. W. K. Ng, E. S. Lo, and R. Schober, Robust beamforming for secure communication in systems with wireless information and power transfer, IEEE Trans. Wirel. Commun. 13 (2014), no. 8, 4599-4615. https://doi.org/10.1109/TWC.2014.2314654
  17. X. Li, J. Li, and L. Li, Performance analysis of impaired SWIPT NOMA relaying networks over imperfect Weibull channels, IEEE Syst. J. 14 (2020), no. 1, 669-672.
  18. A. Celik, M. Tsai, R. M. Radaydeh, F. S. Al-Qahtani, and M. Alouini, Distributed user clustering and resource allocation for imperfect NOMA in heterogeneous networks, IEEE Trans. Commun. 67 (2019), 7211-7227. https://doi.org/10.1109/TCOMM.2019.2927561
  19. D. S. W. Hui and V. K. N. Lau, Design and analysis of delay-sensitive cross-layer OFDMA systems with outdated CSIT, IEEE Trans. Wirel. Commun. 8 (2009), no. 7, 3484-3491. https://doi.org/10.1109/TWC.2009.070049
  20. T. Schenk, RF Imperfections in high-rate wireless systems: impact and digital compensation, Springer, New York, 2008.
  21. Y. Zeng and R. Zhang, Full-duplex wireless-powered relay with selfenergy recycling, IEEE Wirel. Commun. Lett. 4 (2015), no. 2, 201-204. https://doi.org/10.1109/LWC.2015.2396516
  22. D. P. M. Osorio, E. E. B. Olivo, H. Alves, J. C. S. S. Filho, and M. Latva-aho, Exploiting the direct link in full-duplex amplify-and-forward relaying networks, IEEE Signal Process. Lett. 22 (2015), no. 10, 1766-1770. https://doi.org/10.1109/LSP.2015.2432741
  23. X. Yue, Y. Liu, S. Kang, A. Nallanathan, and Z. Ding, Exploiting full/half-duplex user relaying in NOMA systems, IEEE Trans. Commun. 66 (2018), no. 2, 560-575. https://doi.org/10.1109/TCOMM.2017.2749400
  24. V. N. Q. Bao, H. Y. Kong, and S. W. Hong, Performance analysis of M-PAM and M-QAM with selection combining in independent but non-identically distributed Rayleigh fading paths, (Proc. IEEE 68th Vehicular Technology Conference, Calgary, Canada), 2008, pp. 1-5.
  25. J. L. Vicario and C. Anton-Haro, Analytical assessment of multi-user vs. spatial diversity trade-offs with delayed channel state information, IEEE Commun. Lett. 10 (2006), no. 8, 588-590. https://doi.org/10.1109/LCOMM.2006.1665119
  26. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products, 7th ed., Academic Press, New York, 2007.
  27. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and series (special functions), Gordon and Breach, New York, 1986.
  28. N. C. Beaulieu and J. Hu, A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar Rayleigh fading channels, IEEE Commun. Lett. 10 (2006), no. 12, 813-815. https://doi.org/10.1109/LCOMM.2006.061048
  29. K. Reshma and A. Babu, Throughput analysis of energy harvesting enabled incremental relaying NOMA system, IEEE Commun. Lett. 24 (2020), no. 7, 1419-1423. https://doi.org/10.1109/LCOMM.2020.2984524