• 제목/요약/키워드: school buildings

Search Result 1,692, Processing Time 0.028 seconds

A Study on the Design Elements for Steel-Framed School Buildings (철골조학교(鐵骨組學校)의 설계요소(設計要素)에 관한 연구(硏究))

  • Lee, Jae-Hoon;Hwang, Jun-Geun
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.1
    • /
    • pp.47-57
    • /
    • 2004
  • The Architects' design process is subjective and mysterious'. If we can reveal this process, it will be very helpful to proceed similar design projects. In the aspect of steel production, Korea is a strong country, but in the aspect of steel usage, Korea does not show its impacts as compared with other countries'. Even though steel has many merits in design as well as in structure, in Korea we have not applied it as design elements. In this situation, the demand of steel in school buildings is increasing, but steel also is used only on the basis of the structural and material meaning. So this thesis tries to find design elements of steel structure buildings, which can be applied in school buildings, through the analysis of existing steel structure buildings and the characteristics of steel.

Seismic Retrofit and Seismic Performance Evaluation of Existing School Structures Using diagonal, x-shaped, chevron Braces (가새를 사용한 기존 학교건축물의 내진보강 및 내진성능평가)

  • Kim, Dong-Keon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.115-121
    • /
    • 2011
  • Occurrence of earthquakes have been increased all over the world and also, magnitude of earthquakes have been larger these days. Earthquake can be happened in Korea and is not a safe country any more. Many buildings are exposed at danger without any alternatives against earthquake in Korea. Among various kinds of buildings, school buildings are very important and urgent, because many students stays at school and young students have some difficulty to evacuate. Also, most existing school buildings in Korea were not designed considering earthquake resistant design codes. Thus, in this study, 3 types of braces were applied for seismic retrofits of existing school buildings using commercial structural analysis software and effective seismic retrofits were evaluated and discussed based on results by time history analysis.

Development of Sensor Monitoring System for Emergency Response of Old School Buildings (노후학교 건축물의 재난대응을 위한 센서 모니터링 시스템 개발)

  • Park, Choon-Wook;Lee, Gyeong-Won;Lee, Ji-Soo
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.27 no.1
    • /
    • pp.3-10
    • /
    • 2020
  • Due to the frequent occurrence of large-scale disasters such as recent earthquakes, the problem of the safety of old school buildings has emerged. The need to secure safety management technology through constant monitoring is increasing in an attempt to supplement old school buildings with weak disaster response capabilities. Traditional research is approaching the development of an existing sensor-based risk precursor information monitoring system. However, unlike this, in this study, we will focus on the development of a data analysis platform as part of the development of a continuous monitoring system that can be prepared for earthquakes, collapses, and fires, based on constantly measured data. For this reason, the development of a safety diagnostic algorithm based on the optimal sensor-attached points and sensor data reflecting the fragile characteristics of old school buildings was derived. Utilizing this, a message and action manual system for each management / use entity of school buildings after retirement was constructed.

Analysis of seismic mid-column pounding between low rise buildings with unequal heights

  • Jiang, Shan;Zhai, Changhai;Zhang, Chunwei;Ning, Ning
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.395-402
    • /
    • 2018
  • Floor location of adjacent buildings may be different in terms of height elevation, and thus, the slab may hit on the columns of adjacent insufficiently separated buildings during severe ground motions. Such impacts, often referred to as mid-column pounding, can be catastrophic. Substantial pounding damage or even total collapse of structures was often observed in large amount of adjacent low rise buildings. The research on the mid-column pounding between low rise buildings is in urgency need. In present study, the responses of two adjacent low rise buildings with unequal heights and different dynamic properties have been analyzed. Parametric studies have also been conducted to assess the influence of story height difference, gap distance and input direction of ground motion on the effect of structural pounding response. Another emphasis of this study is to analyze the near-fault effect, which is important for the structures located in the near-fault area. The analysis results show that collisions exhibit significant influence on the local shear force response of the column suffering impact. Because of asymmetric configuration of systems, the structural seismic behavior is distinct by varying the incident directions of the ground motions. Results also show that near-fault earthquakes induced ground motions can cause more significant effect on the pounding responses.

Seismic induced damageability evaluation of steel buildings: a Fuzzy-TOPSIS method

  • Shahriar, Anjuman;Modirzadeh, Mehdi;Sadiq, Rehan;Tesfamariam, Solomon
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.695-717
    • /
    • 2012
  • Seismic resiliency of new buildings has improved over the years due to better seismic codes and design practices. However, there is still large number of vulnerable and seismically deficient buildings. It is not economically feasible to retrofit and upgrade all vulnerable buildings, thus there is a need for rapid screening tool. Many factors contribute to the damageability of buildings; this makes seismic evaluation a complex multi-criteria decision making problem. Many of these factors are noncommensurable and involve subjectivity in evaluation that highlights the use of fuzzy-based method. In this paper, a risk-based framework earlier proposed by Tesfamariam and Saatcioglu (2008a) is extended using Fuzzy-TOPSIS method and applied to develop an evaluation and ranking scheme for steel buildings. The ranking is based on damageability that can help decision makers interpret the results and take appropriate decision actions. Finally, the application of conceptual model is demonstrated through a case study of 1994 Northridge earthquake data on seismic damage of steel buildings.

Estimating Optimum Investment Cost for Obsolete School Buildings (노후화된 학교건물의 적정시설투자비 산정모델 적용사례)

  • Huh, Young-Ki
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.1
    • /
    • pp.10-25
    • /
    • 2011
  • Area Offices of Education in Korea assign and execute government budget based on the evaluation of school buildings' safety rating and degree of their deterioration. However, it is never easy to estimate the most appropriate investment amount for old buildings under consideration of their service lives and residual values together. A model of estimating optimum investment cost for obsolete school building is developed taking its life cycle cost into account. The model is also applied to six old buildings in five different schools and found that some of the facilities hardly needed further investment and were better to be rebuilt. The study results will be a great beneficial for officers to make right decision on maintaining obsolete school buildings and to maximize tax payers' money.

Evaluating Performance of Energy Conservation Measures for Remodeling Educational Facilities - Focused on Deteriorated Middle School Buildings - (교육시설 리모델링을 위한 에너지 절감 요소기술의 성능 평가 - 노후 중학교 건물 중심으로 -)

  • Lhee, Sang-Choon;Choi, Young-Joon;Choi, Yool
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.105-110
    • /
    • 2012
  • Recently, all of the world are facing with a serious environmental crisis of global warming due to excessive energy consumptions. The Korean Government, taking over 97% of dependence on foreign energy, has made various efforts on reducing energy and greenhouse gas emission under the motto of "Low-Carbon Green Growth". Since the building sector takes 24% of domestic energy consumption, many design standards and regulations on saving energy in new buildings have been established. However, applications of energy saving designs and techniques on the remodeling process at deteriorated buildings including educational ones have been lack. Under a situation where the number of deteriorated schools accounts for up to 50%, this paper evaluated the performances of factors for reducing energy at deteriorated middle school buildings through an energy simulation tool on a standard school model. As a result, among factors of insulation, window's SHGC, southern louver, indoor setup temperature, and system efficiency, all other factors except window's SHGC and southern louver proved contribute to reduce energy at deteriorated middle school buildings, compared with the baseline energy consumption.

Failure Mode of Structural Components Considering Column Axial Forces and Partial Masonry Infills for School Buildings Constructed in the 1980s (기둥 축력과 조적허리벽을 고려한 1980년대 학교교사 구조요소의 파괴모드 평가)

  • Jeong, Su-Hyeon;Choi, Myeong-Ho;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.57-64
    • /
    • 2022
  • As earthquakes have increased in Korea recently, people are paying attention to the seismic performance of buildings built in the past. Many school buildings in Korea were built based on standard drawings before the seismic design was applied. However, since school buildings are often designated as emergency evacuation facilities in case of disasters such as earthquakes, seismic evaluation and retrofit must be done quickly. This study investigated the failure modes among structural components (beams, columns, and joints), focusing on 1980s standard drawings for school buildings. The effects of column axial force, partial masonry infills, and different material strengths for concrete and rebar were considered for detailed evaluation. As a result, most of the joints were found to be the weakest among structural components. Column axial forces tended to make the joints more vulnerable, and partial masonry infills increased the possibility of joint failure and shear failure in columns.

THE EFFECT OF LEED CERTIFIED BUILDING ON THE SURROUNDING NEIGHBORHOOD IN NEW YORK CITY

  • Min Jae Suh;Annie R. Pearce;Young Hoon Kwak
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.28-35
    • /
    • 2013
  • The construction industry has introduced the Leadership in Energy and Environmental Design (LEED) rating system to promote objective evaluations of the sustainability of buildings. Three important values to consider when implementing sustainability are the associated environmental, social, and economic impacts. Recently, researchers have begun to investigate the real estate value of LEED certified buildings in terms of the rental cost, occupancy rate, cost per unit area, and resale value in order to better understand the economic benefits of the LEED rating system. However, the economic benefits also encompass economic effects such as the impact of LEED certified buildings on neighborhood real estate values surrounding the certified buildings. This research examines whether the enhanced real estate value of LEED certified buildings in New York City extends to surrounding commercial buildings, utilizing spatial analysis via a Geographic Information System (GIS) and the hedonic pricing method to derive meaningful economic relationships. The results provide practical insights into the economic effect of LEED certified buildings that will be of interest to city officials and planners, as well as the owners, developers, investors and other stakeholders of surrounding buildings.

  • PDF

A Study on Color Planning of Elementary, Middle and High School Buildings -A Case Study of Domestic and Foreign School Buildings- (초(初).중등학교(中等學校) 건축(建築)의 색채계획(色彩計劃) 분석(分析) 연구(硏究) -국내.외 학교건축의 사례 중심으로-)

  • Kim, In-Hyeog;Kang, Byoung-Keun
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.1
    • /
    • pp.74-87
    • /
    • 2011
  • The purpose of this study is in providing a systematic method for school building color scheme. This study analyzed the cases of color uses in domestic and foreign school buildings. The results from this study tells that the colors in school buildings should take into account the environmental, psychological and functional elements at the same time to effectively function as environmental color, effect color and induction color.