• Title/Summary/Keyword: school bonding

Search Result 893, Processing Time 0.024 seconds

Intermetallic Compound Growth Characteristics of Cu/Ni/Au/Sn-Ag/Cu Micro-bump for 3-D IC Packages (3차원 적층 패키지를 위한 Cu/Ni/Au/Sn-Ag/Cu 미세 범프 구조의 열처리에 따른 금속간 화합물 성장 거동 분석)

  • Kim, Jun-Beom;Kim, Sung-Hyuk;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • In-situ annealing tests of Cu/Ni/Au/Sn-Ag/Cu micro-bump for 3D IC package were performed in an scanning electron microscope chamber at $135-170^{\circ}C$ in order to investigate the growth kinetics of intermetallic compound (IMC). The IMC growth behaviors of both $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ follow linear relationship with the square root of the annealing time, which could be understood by the dominant diffusion mechanism. Two IMC phases with slightly different compositions, that is, $(Cu,Au^a)_6Sn_5$ and $(Cu,Au^b)_6Sn_5$ formed at Cu/solder interface after bonding and grew with increased annealing time. By the way, $Cu_3Sn$ and $(Cu,Au^b)_6Sn_5$ phases formed at the interfaces between $(Cu,Ni,Au)_6Sn_5$ and Ni/Sn, respectively, and both grew with increased annealing time. The activation energies for $Cu_3Sn$ and $(Cu,Ni,Au)_6Sn_5$ IMC growths during annealing were 0.69 and 0.84 eV, respectively, where Ni layer seems to serve as diffusion barrier for extensive Cu-Sn IMC formation which is expected to contribute to the improvement of electrical reliability of micro-bump.

An Analysis of High School Students' Analogy Generating Processes Using Think-Aloud Method (발성사고법을 활용한 고등학생의 비유 생성 과정 분석)

  • Kim, Minhwan;Kwon, Hyeoksoon;Lee, Donghwi;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.1
    • /
    • pp.43-55
    • /
    • 2018
  • In this study, we investigated high school students' analogy generating processes using the think-aloud method. Twelve high school students in Seoul participated in this study. The students were asked to generate analogies on ionic bonding and were also interviewed after their activities. Their activities and interviews were recorded and videotaped. After classifying the analogy generating processes into the three stages-encoding, exploring sources, and mapping, several process components were identified. The analyses of the results indicated that they checked the target concept given and selected one for a salient attribute among many attributes of the target concept at the stage of encoding. After selecting the salient attribute, they translated the salient attribute that is a scientific term into an everyday term, which is named as 'extracting salient similarities.' At the stage of exploring sources, they chose the sources based on salient similarities and chose the final source through circular processes, which included the process components of 'evaluating the sources' and 'discarding the sources.' At the final stage, they added the attributes to analogs and mapping them to the attributes of the target concept, which is named as 'mapping shared attributes.' There were some cases that 'mapping shared attributes' appeared after they specified the situation of analogs or assumed new situation, which is named as 'specifying the situations.' Some students recognized unshared attributes in their analogs.

Shear bond strength of orthodontic adhesive to amalgam surface using light-cured resin (광중합형 레진으로 아말감 면에 브라켓 접착 시 전단결합강도)

  • Cho, Ji-Young;Lee, Dong-Yul;Lim, Yong-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.443-450
    • /
    • 2005
  • This study was performed to compare the shear bond strength of orthodontic adhesive to amalgam according to different light sources (halogen-based light and light emitting diode (LED)) and amalgam surface treatments. Ninety extracted human premolars were randomly divided into 6 groups (4 experimental and 2 control groups) of 15 by light sources and surface treatments. Orthodontic brackets were bonded and shear bond strength was measured with an Instron universal testing machine. The findings were as follows: The bond strength of adhesive to amalgam surface was 3-5.5 MPa which was lower than that of acid-etched enamel (19 MPa) control. In the sandblasted amalgam surface, the shear bond strength of the halogen light group was higher than that of the LED group (p < 0.05) but. in the non-treated amalgam surface. there was no significant difference in the shear bond strength according to the light sources (p> 0.05). Within the same light source. sandblasting had no significant effect on the shear bond strength of the adhesive bonded to amalgam surface (p > 0.05). There was no significant difference in shear bond strength according to the light sources in acid-etched enamel control groups. This results suggest that there can be a limit in using light curing adhesives when brackets are bonded to an amalgam surface. Additional clinical studies are necessary before routine use of halogen light and LED light curing units can be recommended in bonding brackets to an amalgam surface.

Effect of Blood Decontamination on Orthodontic Bracket Bonding (혈액 오염 처리 과정이 교정용 브라켓 접착에 미치는 영향)

  • Lee, Jaehee;Shin, Jisun;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.3
    • /
    • pp.341-349
    • /
    • 2017
  • Blood decontamination is an important factor in success of the orthodontic bracket. The purpose of this study is to evaluate the shear bond strength affected by blood decontamination. The shear bond strength was measured on blood decontamination before and after primer photopolymerization. And the adhesive remnants type and surface patterns was evaluated under scanning electron microscopy. A total of 50 human premolars were prepared. Group I was attached using conventional resin-acid etching method as control group. Group II and III were blood contaminated before curing primer and groups IV and V were blood contaminated after curing primer. Group II and IV were treated only with cotton pellet and Groups III and V were treated with cotton pellet after water washing. The mean shear bond strengths were in the order of groups I, V, III, II, and IV. In scanning electron micrographs group III and V showed more uniform surface than group II and IV. The ARI was significantly different between the control group and the experimental groups (p <0.05).

A Study on the Prediction of Elastoplastic Behavior of Carbon Nanotube/Polymer Composites (계면 결합력과 나노튜브의 응집에 따른 나노튜브/고분자 복합재의 탄소성 거동 예측에 대한 연구)

  • Yang, Seunghwa;Yu, Suyoung;Ryu, Junghyun;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.423-430
    • /
    • 2013
  • In this research, a paramteric study to account for the effect of interfacial strength and nanotube agglomeration on the elastoplastic behavior of carbon nanotube reinforced polypropylene composites is performed. At first, the elastoplastic behavior of nanocomposites is predicted from molecular dynamics(MD) simulations. By combining the MD simulation results with the nonlinear micromechanics model based on the Mori-Tanaka model, a two-step domain decomposition method is applied to inversely identify the elastoplastic behavior of adsorption interphase zone inside nanocomposites. In nonlinear micromechanics model, the secant moduli method combined with field fluctuation method is used to predict the elastoplastic behavior of nanocomposites. To account for the imperfect material interface between nanotube and matrix polymer, displacement discontinuity condition is applied to the micromechanics model. Using the elastoplastic behavior of the adsorption interphase zone obtained from the present study, stress-strain relation of nanocomposites at various interfacial bonding condition and local nanotube agglomeration is predicted from nonlinear micromechanics model with and without the adsorption interphase zone. As a result, it has been found that local nanotube agglomeration is the most important design factor to maximize reinforcing effect of nanotube in elastic and plastic behavior.

An Experimental Study on the Effect of Laser to Bond Strength between Composite Resin and Bovine Teeth (우치치질에 레이저조사시 레진과의 결합강도에 관한 연구)

  • Cho, Ju-On;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.155-172
    • /
    • 1989
  • The purpose of this study is to measure the bonding strength at the enamel and dentin of extracted bovine incisors when they are irradiated by W Nd: YAG, EoQ Nd: YAG, and CW $CO_2$ laser, etched and then attached by composite resin. The laser-irradiated surface, the etched surface after the laser-irradiation and the interface of the treated surface and resin are observed by using scanning electron microscope. The NP Nd:YAG laser is used at the peam power of 207 KW. The EOQ Nd: YAG laser is used at the peak power of 1.15Mk. The CW $CO_2$ laser is used at the energy output of 5W and 10W in enamel; in dentin, at the energy output of 2W. The obtained results were as follows: 1. The shear bond strength of enamel decreased in the following order: EOQ Nd:YAG laser group, NP Nd:YAG laser group, CW $CO_2$ laser groups, unlased group. The unlased group showed a significant difference from EOQ Nd:YAG laser group (P<0.01), NP Nd:YAG laser group (P<0.05), but no significant difference from CW $CO_2$ laser group (P>0.05). 2. The shear bond strength of dentin decreased in the following order: CW $CO_2$ laser group, NP Nd:YAG laser group, unlased group, EOQ Nd:YAG laser group. The unlased group showed a significant difference from CW $CO_2$ laser group (P<0.01), but no significant difference from Nd:YAG laser groups (P>0.05). 3. The scanning electron microscope of enamel revealed irregular microcrack and pore at the surface in the NP Nd:YAG laser group and CW $CO_2$ laser group, but the crackless flat surface in the EOQ Nd:YAG laser group. 4. The scanning electron microscope of dentin revealed obstruction of in most of dentinal tubule and decrease of diameter. 5. The scanning electron microscope of the interface of resin and enamel revealed prominent penetration of resin tag in the EOQ Nd:YAG laser group.

  • PDF

Shear bond strength of a self-adhesive resin cement to resin-coated dentin (간접수복용 복합레진과 자가 접착 레진 시멘트의 전단결합강도에 레진코팅법이 미치는 영향)

  • Hong, Jee-Youn;Park, Cheol-Woo;Heo, Jeong-Uk;Bang, Min-Ki;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • Purpose: The aims of this study were to evaluate the effect of a resin coating on the shear bond strength of indirect composite restoration bonded to dentin with a self adhesive resin cement and to compare the shear bond strength with that of a conventional resin cement. Materials and methods: The occlusal enamels of thirty six extracted noncarious human molars were removed until the dentin flat surfaces of the teeth were exposed. Then, they were divided into 3 groups. The dentin surfaces of group 1 and 3 were left without any conditioning, while the dentin surfaces of group 2 were resin-coated with Clearfil SE bond and a flowable resin composite, Metafil Flo. After all specimens were temporized for 24 hours, indirect composite resin blocks fabricated by Tescera were bonded to dentins by Unicem for group 1 and 2, and by Panavia F for group 3. After 48 hours of water storage, shear bond strengths were measured. The data was analyzed with one-way analysis of variance and multiple comparison test (Tukey method). Results: The shear bond strengths of Unicem applied to resin coated dentin surfaces were significantly higher than those of Unicem and Panavia F used to uncoated dentin surfaces (P<.0001). Conclusion: Application of a resin coating to the dentin surface significantly improved the shear bonding strength of a self adhesive resin cement in indirect restoration.

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

A Study on the Interfacial Bonding between AlN Ceramics and Metals: II. Effect of Mo Interlayer on the Residual Stress of AlN/Cu Joint (AlN 세라믹스와 금속간 계면접합에 관한 연구: II. AlN/Cu 접합체의 잔류응력에 미치는 Mo 중간재의 영향)

  • Park, Sung-Gye;Kim, Ji-Soon;You, Hee;Yum, Young-Jin;Kwon, Young-Soon
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.970-977
    • /
    • 1999
  • Effect of Mo interlayer on the relaxation of residual stress in AlN/Cu pint bonded by active-metal brazing method was investigated. The stress analyses by finite-element-method, the measurement of pint strength and the observation of fracture surface were carried out and their results were compared with each other. From the results of stress analysis it is confirmed that a Mo interlayer led to a shift of maximum stress concentration site from AlN/insert-metal interface$\rightarro$ insert-metal/Mo$\rightarro$Mo interlayer. Additionally, with increase of the Mo interlayer thickness the stress concentration with tensile component was separately built both at the interface of Cu/Mo and AlN/Mo. whereby the residual stress in the free surface of AlN close to the bonded interface was drastically reduced. The AlN/Mo/Cu pints with Mo interlayer thickness of above 400$\mu\textrm{m}$ showed the strengths higher than 200 MPa. upto max. 275 MPa, while the AlN/Cu pint only max. 52 MPa.

  • PDF

Effect of $Ar^+$ RF Plasma Treatment Conditions on Interfacial Adhesion Energy Between Cu and ALD $Al_2O_3$ Thin Films for Embedded PCB Applications ($Ar^+$ RF 플라즈마 처리조건이 임베디드 PCB내 전극 Cu박막과 ALD $Al_2O_3$ 박막 사이의 계면파괴에너지에 미치는 영향)

  • Park, Sung-Cheol;Lee, Jang-Hee;Lee, Jung-Won;Lee, In-Hyung;Lee, Seung-Eun;Song, Byoung-Ikg;Chung, Yul-Kyo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • Interfacial fracture energy(${\Gamma}$) between $Al_2O_3$ thin film deposited by Atomic Layer Deposition(ALD) and sputter deposited Cu electrode for embedded PCB applications is measured from a $90^{\circ}$ peel test. While the interfacial fracture energy of $Cu/Al_2O_3$ is very poor, Cr adhesion layer increases the interfacial fracture energy to $39.8{\pm}3.2g/mm\;for\;Ar^+$ RF plasma power density of $0.123W/cm^2$, which seems to come from the enhancement of the mechanical interlocking and Cr-O chemical bonding effects.

  • PDF