• Title/Summary/Keyword: school bonding

Search Result 893, Processing Time 0.027 seconds

Effect of Weldbond Process on the Weldability of 1.2GPa Grade Galvannealed TRIP Steel for Car Body Manufacturing (차체용 1.2GPa급 합금화아연도금 TRIP강의 용접성에 미치는 Weldbond 공정의 효과)

  • Lee, Jong-Dae;Lee, Hye-Rim;Kim, Mok-Soon;Seo, Jong-Deok;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.28-34
    • /
    • 2016
  • Galvannealed(GA) steels are now generally used in car body manufacturing for corrosion resistance. In this study, the weldability and joint mechanical behavior of a newly developed 1.2GPa grade GA ultra high strength TRIP(transformation induced plasticity) steel was investigated for three joining processes, such as adhesive bonding, resistance spot welding and weldbonding. Under both shear and peel stress conditions, the failure mode of the adhesive joints were the mixture of the adhesive cohesive failure, adhesive interface failure and coating layer failure. It means that the adhesion strength of GA coating onto the base metal was similar to that of adhesive bonding onto the GA coating. Under the shear stress condition, the weldbonding exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel because the strength of adhesive bond overwhelmed that of the resistance spot weld. Under the peel stress condition, the weldbonding also exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel by inducing the tear fracture mode rather than the partial plug fracture mode.

Degradation Behavior of Nylon 4 in the Presence of Newly Synthesized Thermal Stabilizers (합성 열안정제에 의한 나일론 4의 분해거동)

  • Jang, Geunseok;Kim, Jongho;Kim, Daigeun;Kim, Young Jun;Lee, Taek Seung
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.314-319
    • /
    • 2014
  • Three kinds of thermal stabilizers for nylon 4 were synthesized to incorporate both hindered amine groups and methylene units with various lengths. It is expected that the hindered amine groups play a role in the capture of degradation-triggering species. Considering sequence rules, hydrogen bonding formed between nylon 4 and the stabilizers is optimized to alter the lengths of the methylene units in the stabilizers. As a result, it was found that a tetramethylene unit in the stabilizer is an optimal length for hydrogen bonding in terms of isothermal thermogravimetric analysis (TGA). Considering the slight and often negligible improvement of thermal stability of nylon 4 containing commercially-available nylon 6 stabilizers, retardation of thermal degradation has been substantially improved upon.

TENSILE STRENGTH OF ORTHODONTIC DIRECT BONING ADHESIVES (교정용 접착제의 인장강도)

  • Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.12 no.1
    • /
    • pp.15-20
    • /
    • 1982
  • The requirement of ideal orthodontic direct bonding adhesive should include longevity of bond, ability to withstand a variety of forces, resistance to the degrading effects of the oral environment, and ability to be easily removed without affecting the integrity of the enamel. The purpose of this study was to evaluate the adhesive properties of recently developed 3 orthodontic directbonding adhesives by testing the tensile strength. 75 premolars extracted for orthodontic treatment were used. The tensile strength was tested by Tensilon/UTM-1-10000C after 24 hours from bonding. Following results were obtained; The mean tensile strength of each product was higher than the maximum force $(29kg/cm^2)$ exerted on a bracket during orthodontic treatment. The tensile strength of Mono-Lok was statistically higher than Concise and Dyna-Bond, although there was no difference between the tensile strength of Concise and Dyna-Bond statistically. Of the filure, the combination type of failure $(68\%)$, where part of the adhesive remained on the tooth and part on the bracket was the most common type. The second type of failure $(22.7\%)$ occurred at the toothadhesive interface and the last type of failure $(9.3\%)$ occurred at the adhesive-bracket interface.

  • PDF

The Impact of Psychosocial Protective and Risk Factors on Problem Drinking among American Adolescents: Focused on Compensatory and Buffering Effects of Protective Factors (미국 청소년의 문제성 음주에 대한 심리사회적 보호변인과 위험변인의 역할 - 보호변인의 보상효과와 완충효과를 중심으로 -)

  • Kim, Young-Mi
    • Korean Journal of Social Welfare
    • /
    • v.56 no.4
    • /
    • pp.269-290
    • /
    • 2004
  • The purpose of this study was to examine the impact of psychosocial protective and risk factors on problem drinking among American adolescents. In addition, this study investigated the compensatory and buffering effects of psychosocial protective factors. The sample consisted 4,362 10th graders taken from the Monitoring the Future Study 2002. This study performed the hierarchical regression analysis for data analyses. The main findings provided that friend influence, sensation-seeking, and tolerance of deviance had significant positive relationships with problem drinking as risk factors. This study also revealed that negative perception on drinking, parental bonding, school bonding, and prosocial activity had significant direct impacts in decreasing problem drinking, which explains the compensatory effect of protective factors. Additionally, this study showed that negative perception on drinking had a significant buffering effect moderating friend influence on adolescents' opportunities exposed to problem drinking. The results of this study suggest some practical implications for preventive intervention programs that target adolescent problem drinking.

  • PDF

A Theoretical Study on the Inter-molecular Hydrogen Bond Between Nitromethanes and the Stabilization of Nitromethane Dimer (니트로메탄의 분자 간 수소결합과 니트로메탄 이합체의 안정화에 관한 이론적 연구)

  • Lee, Min-Joo;Kim, Ji-Young
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.229-235
    • /
    • 2004
  • For the study of hydrogen bonding phenomenon of high energetic compounds, we have been carried out a theoretical calculations for the nitromethane with the program Gaussian-98. The calculations at levels of restricted BLYP/6-311++G(d,p), B3LYP/6-311++G(d,p) and MP2/6-311++G have been performed to obtain molecular structures, hydrogen bonding effects and vibrational spectra of nitromethane monomer and dimer. The results show nitromethane is favored to make two hydrogen bonds between molecules and the nitromethane dimer is more stable than the monomer about 15.2, 19.4 and 32.6 kJ/mol for the BLYP, B3LYP, and MP2 level calculations, respectively.

A Study on Bond Strength of Procelain with Non Precious Alloy (도재전장관용 비귀금속합금과 도재의 융착결합에 관한 연구)

  • Kang, Sung-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 1980
  • The adhesive mechanisms on the metal-ceramic restorations have been reported to be mechanical interlocking, chemical bonding, compressive force, and Van der Waal's force, etc. Of these, the mechanical interlocking and chemical bonding forces are thought to affect the adhesive force between Ni-Cr alloy and porcelain. This study investigates the adhesion of Ni-Cr alloy to porcelain according to surface treatment. For this purpose, the following experiments were made; The compositions of Ni-Cr alloy as cast by emission spectrograph, and the oxides produced on Ni-Cr alloy during degassing at $1850^{\circ}F$ for 30 minutes in air and in vacuum were analyzed by X-ray diffractograph. The metal phases of Ni-Cr alloy were observed according to porcelain-baking cyclic heat treatment by photo microscope and the distribution and the shift of elements of Ni-Cr alloy and porcelain and the failure phases between Ni-Cr alloy and porcelain by scanning electron microscope. The adhesive force between Ni-Cr alloy and porcelain was measured according to surface treatment with oxidization and roughening by Instron Universal Testing Machine. Results were as follows; 1. The metal phases of Ni-Cr alloy as cast and degassing state showed the enlarged and fused core, but when subjected to porcelain-baking cyclic heat treatment, showed a dendrite growing. 2. The kinds of metal oxides produced on Ni-Cr alloy during degassing were found to be NiO and $Cr_2O_3$. 3. The distribution of elements at the interface of Ni-Cr alloy and porcelain in degassing state showed demarcation line, but in roughening state, showed mechanical interlocking phase. 4. The shift of elements at the interface occurred in both states, but the shift amount was found to be larger in roughening than in degassing. 5. The adhesive force between Ni-Cr alloy and porcelain was found to be $3.45{\pm}0.93kg/mm^2$, in degassing and $3.82{\pm}0.99kg/mm^2$, in roughening. 6. The failure phase between Ni-Cr alloy and porcelain showed the mixed type failure.

  • PDF

Effects of post surface conditioning before silanization on bond strength between fiber post and resin cement

  • Mosharraf, Ramin;Ranjbarian, Parisa
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.126-132
    • /
    • 2013
  • PURPOSE. Post surface conditioning is necessary to expose the glass fibers to enable bonding between fiber post and resin cement. The purpose of the present study was to evaluate the effect of different surface conditioning on tensile bond strength (TBS) of a glass fiber reinforced post to resin cement. MATERIALS AND METHODS. In this in vitro study, 40 extracted single canal central incisors were endodontically treated and post spaces were prepared. The teeth were divided into four groups according to the methods of post surface treatment (n=10): 1) Silanization after etching with 20% $H_2O_2$, 2) Silanization after airborne-particle abrasion, 3) Silanization, and 4) No conditioning (Control). Adhesive resin cement (Panavia F 2.0) was used for cementation of the fiber posts to the root canal dentin. Three slices of 3 mm thick were obtained from each root. A universal testing machine was used with a cross-head speed of 1 mm/minute for performing the push-out tests. Two-way ANOVA and Tukey post hoc tests were used for analyzing data (${\alpha}$=0.05). RESULTS. It is revealed that different surface treatments and root dentin regions had significant effects on TBS, but the interaction between surface treatments and root canal regions had no significant effect on TBS. There was significant difference among $H_2O_2$ + Silane Group and other three groups. CONCLUSION. There were significant differences among the mean TBS values of different surface treatments. Application of hydrogen peroxide before silanization increased the bond strength between resin cements and fiber posts. The mean TBS mean values was significantly greater in the coronal region of root canal than the middle and apical thirds.

Study on the Different Characteristic of Chemical and Electronic Properties (SiOC 박막의 화학적 특성과 전기적인 특성에 대한 차이점에 관한 연구)

  • Oh, Teresa
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2009
  • The chemical properties of SiOC film was studied for inter-layer insulator. SiOC film was formed with non polarity due to the appropriate union by the alkyl and hydroxyl group. An amorphous structure of non polarity can induce the low dielectric constant materials. The chemical properties of thin film can define the bonding structure owing to the ionic variation, and the analysis of chemical properties was researched by the carbon content using the FTIR spectra, and induced the film with non polarity. The electrical properties is the electron flow, and is always not the same as the chemical properties. The electrical properties of SiOC film with various flow rate ratios was analyzed and researched the correlation between the chemical properties. SiOC film showed the increasing of the leakage current after annealing process, and abruptly increased the carbon content at some samples. But the sample with increasing the carbon content decreased the leakage current. It means that the chemical properties is not the same as the electrical properties, and the carbon is related with the variation of the bonding structure, and does not contribute the current flow.

Heterogeneous Device Packaging Technology for the Internet of Things Applications (IoT 적용을 위한 다종 소자 전자패키징 기술)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The Internet of Things (IoT) is a new technology paradigm demanding one packaged system of various semiconductor and MEMS devices. Therefore, the development of electronic packaging technology with very high connectivity is essential for successful IoT applications. This paper discusses both fan-out wafer level packaging (FOWLP) and 3D stacking technologies to achieve the integrattion of heterogeneous devices for IoT. FOWLP has great advantages of high I/O density, high integration, and design flexibility, but ultra-fine pitch redistribution layer (RDL) and molding processes still remain as main challenges to resolve. 3D stacking is an emerging technology solving conventional packaging limits such as size, performance, cost, and scalability. Among various 3D stacking sequences wafer level via after bonding method will provide the highest connectivity with low cost. In addition substrates with ultra-thin thickness, ultra-fine pitch line/space, and low cost are required to improve system performance. The key substrate technologies are embedded trace, passive, and active substrates or ultra-thin coreless substrates.

The effects of non-thermal plasma and conventional treatments on the bond strength of fiber posts to resin cement

  • do Prado, Maira;da Silva, Eduardo Moreira;Marques, Juliana das Neves;Gonzalez, Caroline Brum;Simao, Renata Antoun
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.2
    • /
    • pp.125-133
    • /
    • 2017
  • Objectives: This study compared the effect of hexamethyldisiloxane (HMDSO) and ammonia ($NH_3$) plasmas on the bond strength of resin cement to fiber posts with conventional treatments. Materials and Methods: Sixty-five fiber posts were divided into 5 groups: Control (no surface treatment); $H_2O_2$ (24% hydrogen peroxide for 1 min); Blasting (blasting with aluminum oxide for 30 sec); $NH_3$ ($NH_3$ plasma treatment for 3 min); HMDSO (HMDSO plasma treatment for 15 min). After the treatments, the Ambar adhesive (FGM Dental Products) was applied to the post surface (n = 10). The fiber post was inserted into a silicon matrix that was filled with the conventional resin cement Allcem Core (FGM). Afterwards, the post/cement specimens were cut into discs and subjected to a push-out bond strength (POBS) test. Additionally, 3 posts in each group were evaluated using scanning electron microscopy. The POBS data were analyzed by one-way analysis of variance and the Tukey's honest significant difference post hoc test (${\alpha}=0.05$). Results: The Blasting and $NH_3$ groups showed the highest POBS values. The HMDSO group showed intermediate POBS values, whereas the Control and $H_2O_2$ groups showed the lowest POBS values. Conclusion: Blasting and $NH_3$ plasma treatments were associated with stronger bonding of the conventional resin cement Allcem to fiber posts, in a procedure in which the Ambar adhesive was used.