Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.3.314

Degradation Behavior of Nylon 4 in the Presence of Newly Synthesized Thermal Stabilizers  

Jang, Geunseok (Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Kim, Jongho (Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Kim, Daigeun (Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Kim, Young Jun (School of Chemical Engineering, Sungkyunkwan University)
Lee, Taek Seung (Organic and Optoelectronic Materials Laboratory, Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.38, no.3, 2014 , pp. 314-319 More about this Journal
Abstract
Three kinds of thermal stabilizers for nylon 4 were synthesized to incorporate both hindered amine groups and methylene units with various lengths. It is expected that the hindered amine groups play a role in the capture of degradation-triggering species. Considering sequence rules, hydrogen bonding formed between nylon 4 and the stabilizers is optimized to alter the lengths of the methylene units in the stabilizers. As a result, it was found that a tetramethylene unit in the stabilizer is an optimal length for hydrogen bonding in terms of isothermal thermogravimetric analysis (TGA). Considering the slight and often negligible improvement of thermal stability of nylon 4 containing commercially-available nylon 6 stabilizers, retardation of thermal degradation has been substantially improved upon.
Keywords
nylon 4; thermal stability; TGA; thermal stabilizers;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. H. Lee and H. H. Cho, Text. Sci. Technol., 48, 91 (2011).
2 D. Coleman and E. J. Siegman, U. S. Patent 4,301,106 (1981).
3 R. House, U. S. Patent 4,083,827 (1978).
4 P. H. Parker, U. S. Patent 4,071,486 (1978).
5 H. H. Cho, J. W. Jeon, M. H. Lee, S. H. Lee, and S. T. Kwon, Text. Sci. Technol., 48, 150 (2011).
6 S. H. Lee and H. H. Cho, Text. Sci. Technol., 48, 340 (2011).
7 S. H. Lee and H. H. Cho, Text. Sci. Technol., 49, 232 (2012).
8 H. H. Cho, M. H. Lee, G. Y. Kim, S. H. Lee, and H. K. Noh, Text. Sci. Technol., 49, 106 (2012).
9 C. W. A. Ng, M. A. Bellinger, and W. J. MacKnight, Macromolecules, 27, 6942 (1994).   DOI
10 http://www.cibasc.com.
11 W. Schnabel, Polymer Degradation, New York, Macmillan Publishing Co., 1981.
12 J. M. G. Cowie and V. Arrighi, Polymers: Chemistry and Physics of Modern Materials, 3rd Edition, Boca Raton, CRC Press, p 412 (2008).
13 C. E. Barnes, Lenzinger Berichte, 62, 62 (1987).
14 H. S. Choi, Polymer(Korea), 1, 29 (1977).
15 H. Sekiguchi, K. J. Ivin, and T. Saegusa, Editors, in Ringopening Polymerization, New York, Elsevier, Vol 2, Chapter 12, p 809 (1984).
16 H. Sekiguchi, P. Tsourkas, F. Carriere, and R. Audebert, Eur. Polym. J., 10, 1185 (1974).   DOI
17 S. K. Kakar, Text. Res. J., 46, 776 (1976).   DOI
18 T. Konomi, C. Toyoki, W. Mizukami, and C. Shimizu, Sen-i Gakkaishi (Jpn), 38, 200 (1982).   DOI
19 T. Konomi, K. Mukasa, and K. Ito, Sen-i Gakkaishi (Jpn), 1, 315 (1985). 4.
20 K. Tachibana, K. Hashimoto, N. Tansho, and H. Okawa, J. Polym. Sci. Part A: Polym. Chem., 49, 2495 (2011).   DOI   ScienceOn
21 R. Bacskai, Polym. Bull., 11, 229 (1984).
22 R. L. Miller, J. Brandrup, E. H. Immergut, and E. A. Grulke, Editors, in Polymer Handbook, New York, Wiley, Section VI, p 33 (1999).