• Title/Summary/Keyword: school bonding

Search Result 893, Processing Time 0.03 seconds

Applying Stochastic Fractal Search Algorithm (SFSA) in Ranking the Determinants of Undergraduates Employability: Evidence from Vietnam

  • DINH, Hien Thi Thu;CHU, Ngoc Nguyen Mong;TRAN, Van Hong;NGUYEN, Du Van;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.583-591
    • /
    • 2020
  • Employability has recently become the first target of the national higher education. Its model has been updated to catch the new trend of Industry 4.0. This paper aims at analyzing and ranking the determinants of undergraduate employability, focusing on business and economics majors in Ho Chi Minh City, Vietnam. In-depth interviews with content analysis have been primarily conducted to reach an agreement on a key group of factors: human capital, social capital, and identity. The Stochastic Fractal Search Algorithm (SFSA) is then applied to rank the sub-factors. Human capital is composed of three major elements: attitude, skill, and knowledge. Social capital is approached at both structural and cognitive aspects with three typical types: bonding, bridging, and linking. The analysis has confirmed the change of priority in employability determinants. Human capital is still a driver but the priority of attitude has been confirmed in the contemporary context. Then, social capital with the important order of linking, bridging, and bonding is emphasized. Skill, knowledge, and identity share the least weight in the model. It is noted that identity is newly proposed in the model but a certain role has been found. The findings are crucial for education strategies to enhance university graduate employability.

Mechanical Properties of Very Rapid Hardening Polymer Mortar for Concrete Repair (보수용 초속경 폴리머 모르타르의 역학적 특성)

  • Hong, Kinam;Shin, Junsu;Han, Sanghoon;Seo, Dongwoo;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.31-37
    • /
    • 2014
  • In this study, mechanical properties of Very-Rapid Hardening Polymer (VRHP) mortar were investigated. To do it, 75 VRHP mortar specimens were tested by the compressive test, bending test, bonding test, freezing and thawing test, length variation test, and water absorption test. From the test results, it was confirmed that the bond strength of VRHP was higher than that of normal concrete by 50 %, and the resistance of freezing and thawing of VRHP was more excellent than normal concrete. In addition, length variation ratio and water absorption ratio of VRHP were smaller than those of normal concrete by 20 %. Therefore, It should be mentioned that VRHP can be successfully used as the material for repairing the crack of concrete structure.

Effect of Diamond Particle Ratio on the Microstructure and Thermal Shock Property of HPHT Sintered Polycrystalline Diamond Compact (PDC) (초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트(PDC)의 미세조직 및 열충격 특성에 미치는 다이아몬드 입자 비율의 영향)

  • Kim, Ji-Won;Park, Hee-Sub;Cho, Jin-Hyeon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.111-115
    • /
    • 2015
  • This study investigates the microstructure and thermal shock properties of polycrystalline diamond compact (PDC) produced by the high-temperature, high-pressure (HPHT) process. The diamond used for the investigation features a $12{\sim}22{\mu}m$- and $8{\sim}16{\mu}m$-sized main particles, and $1{\sim}2{\mu}m$-sized filler particles. The filler particle ratio is adjusted up to 5~31% to produce a mixed particle, and then the tap density is measured. The measurement finds that as the filler particle ratio increases, the tap density value continuously increases, but at 23% or greater, it reduces by a small margin. The mixed particle described above undergoes an HPHT sintering process. Observation of PDC microstructures reveals that the filler particle ratio with high tap density value increases direct bonding among diamond particles, Co distribution becomes even, and the Co and W fraction also decreases. The produced PDC undergoes thermal shock tests with two temperature conditions of 820 and 830, and the results reveals that PDC with smaller filler particle ratio and low tap density value easily produces cracks, while PDC with high tap density value that contributes in increased direct bonding along with the higher diamond content results in improved thermal shock properties.

Fabrication and Characteristics Comparison of Piezoresistive Four Beam Silicon Accelerometer Based on Beam Location (빔 위치변화에 따른 4빔 압저항형 실리콘 가속도 센서의 제조 및 특성비교)

  • Shin, Hyun-Ok;Son, Seung-Hyun;Choi, Sie-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.26-33
    • /
    • 1999
  • In order to examine the effect of beam location n the performance of bridge type piozoresistive silicon accelerometer, three sensors having different location of beams were simulated by FEN(finite element method) and fabricated by RIE(reactive ion etching) and KOH etching method using SDB(silicon direct bonding) wafer, Results of the FEM simulation present that the 1st resonace frequency and Z axis sensitivity of each sensor are identical but the 2nd, and the 3rd resonace frequency and X, Y axis sensitivity are different. Even though the 1st resonance frequency and Z axis sensitivity measured from fabricated sensors do not perfectly coincide with each other, all 3 type sensors present 180 ~ 220N/G of Z sensitivity at 5 V supply voltage and 1.3 ~ 1.7kHz of the 1st resonance frequency and about 2% of lateral sensitivity.

  • PDF

Theoretical Studies on Electronic Structure and Absorption Spectrum of Prototypical Technetium-Diphosphonate Complex 99mTc-MDP

  • Qiu, Ling;Lin, Jian-Guo;Gong, Xue-Dong;Ju, Xue-Hai;Luo, Shi-Neng
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2358-2368
    • /
    • 2011
  • Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations, employing the B3LYP method and the LANL2DZ, 6-31G$^*$(LANL2DZ for Tc), 6-31G$^*$(cc-pVDZ-pp for Tc) and DGDZVP basis sets, have been performed to investigate the electronic structures and absorption spectra of the technetium-99m-labeled methylenediphosphonate ($^{99m}Tc$-MDP) complex of the simplest diphosphonate ligand. The bonding situations and natural bond orbital compositions were studied by the Mulliken population analysis (MPA) and natural bond orbital (NBO) analysis. The results indicate that the ${\sigma}$ and ${\pi}$ contributions to the Tc-O bonds are strongly polarized towards the oxygen atoms and the ionic contribution to the Tc-O bonding is larger than the covalent contribution. The electronic transitions investigated by TDDFT calculations and molecular orbital analyses show that the origin of all absorption bands is ascribed to the ligand-to-metal charge transfer (LMCT) character. The solvent effect on the electronic structures and absorption spectra has also been studied by performing DFT and TDDFT calculations at the B3LYP/6-31G$^*$(cc-pVDZ-pp for Tc) level with the integral equation formalism polarized continuum model (IEFPCM) in different media. It is found that the absorption spectra display blue shift in different extents with the increase of solvent polarity.

Study on the Scap-cure Behavior of Adhesive for Flip-chip Bonding (플립칩 본딩용 접착제의 속경화 거동 연구)

  • Lee, Jun-Sik;Min, Kyung-Eun;Kim, Mok-Sun;Lee, Chang-Woo;Kim, Jun-Ki
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.78-78
    • /
    • 2010
  • 모바일 정보통신기기를 중심으로 패키지의 초소형화, 고집적화를 위해 플립칩 공법의 적용이 증가되고 있고 있으며 접속피치의 미세화에 따라 솔더 및 언더필을 사용하는 C4 공법보다 ACA(Anisotropic Conductive Adhesive), NCA (Non-conductive Adhesive) 등의 접착제를 이용하는 칩본딩 공법에 대한 요구가 증가하고 있다. 특히, NCA 공법의 경우 산업 현장의 대량생산에 대응하기 위해서는 접착제의 속경화 특성이 요구되어 진다. 일반적으로 접착제의 경화거동은 DSC(Differential Scanning Calorimeter)를 사용해 확인하지만, 수초 이내에 경화되는 접착제의 경우는 적용되기 어렵다. 본 연구에서는 이러한 전자패키지용 접착제의 속경화 거동을 효과적으로 평가할 수 있는 방법을 조사 하였다. 실험에서 사용된 접착제는 에폭시계 레진 기반에 이미다졸계 경화제를 사용한 기본적인 포뮬레이션을 사용하였고, 경화시간은 160^{\circ}C에서 1분 이내에 경화되는 특성을 가지고 있다. 경화 거동을 확인하기 위해서 isothermal DSC와 DEA(Dielectric Analysis)의 두가지 방법을 사용해 비교하였다. 두 실험 방법 모두 $160^{\circ}C$를 유지하며 경화 거동을 확인하였고, DoC(Degree of Cure)의 측정오차를 비교 분석하였다. DEA는 이온 모빌리티 변화에 따른 유전손실율을 측정하는 방법으로 80~90% 이후의 경화도는 측정되지 않았지만, 수초 이내에 경화되는 속경화 특성을 평가하기에 적합한 것으로 확인되었다.

  • PDF

Effect of Surface Properties on Adhesive Strength of Joint of Glass Fiber/Polyester Composite Panels (유리섬유/폴리에스테르 복합재료 패널 접합부의 접착강도에 관한 표면성질의 효과)

  • Nhut, Pham Thanh;Yum, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1591-1597
    • /
    • 2012
  • Adherend samples were made from unsaturated polyester and woven and mat glass fibers by the hand layup and vacuum methods. The mechanical properties of the adhesive, composite adherends, and terminal-joint and secondary-joint specimens were determined experimentally. Combinations of the experiment results and the bonding theory were used in this study. The maximum and average shear stresses were calculated based on the maximum tensile force and geometry parameters of the joint specimens. The results of the maximum and average shear stresses were compared and evaluated for six joints. The results showed that the grinding and grind/acetone joint had the highest strength among three types of terminal-joints. Similarly, the mat-mat and mat-woven joints had the highest strength among three types of secondary-joints with the same value. Conversely, no treatment and woven-woven bonding had very low strength. In each case, failure occurred always at two ends and then moved toward the middle area of the overlap length.

A Comparative Evaluation of Mechanical Properties of Orthodontic Wire Joints according to Soldering Methods (납착 방법에 따른 교정용 와이어의 기계적 특성 비교)

  • Lee, Hye-Jin;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.36 no.4
    • /
    • pp.239-246
    • /
    • 2014
  • Purpose: The purpose of this study was to compare the tensile strength and mechanical properties of orthodontic wire joints made by gas soldering and laser welding, with and without filling material, to identify the effectiveness and potential clinical application of laser welded orthodontic wires. Methods: Three joint configurations of orthodontic wire were used: diameter 0.9 to 0.9 mm wire, diameter 0.9 to 0.5 wire and diameter 0.9 mm wire to band. The joints were made using three different methods: gas soldering, laser welding with and without filling material. For each kind of joint configuration or connecting method 7 specimens were carefully produced. The tensile strengths were measured with a universal testing machine (Zwick/Roell, Instron, USA). The hardness measurements were carried out with a hardness tester(Future-Tech Co. Tokyo, Japan). Data were analyzed by AVOVA(p= .05) and Turkey HD test(p= .05). Results: In all cases, gas soldering joints were ruptured on a low level on tensile bonding strength. Significant differences between laser welding and gas soldering(p< .05) were found in each joint configuration. The highest tensile strength means were observed for laser welding, with filling material, of 0.9 to 0.9 mm wire joint. Conclusion: In conclusion, the elastic modulus and tensile strength means of laser soldering with filling material were the highest, and the tensile strength means of laser soldering were higher than those of gas soldering.

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF

A STUDY ON BONDING STRENGTH OF DENTAL AMALGAM TO GLASS IONOMER CEMENT FOLLOWING SURFACE TREATMENT (글라스아이오노머 시멘트 표면 처리에 따른 치과용 아말감의 전단 결합 강도에 관한 연구)

  • Shin, Young-Joo;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.217-230
    • /
    • 1994
  • The purpose of this study was to assess the 24-hour shear bond strength of amalgam to glass ionomer cement, using five different intermediaries. The intermediaries used in this study were Scotchbond 2 (light curing dentin adhesive), Panavia (resin cement), liquid' of glass ionomer cement (chemical curing & light curing), and uncured mixture of light curing glass ionomer cement. This study was operated with 48 specimens devided into 6 groups. The experimental groups are as follows: Group 1 : Bonded Amalgam to chemical curing glass ionomer cement with liquid of chemical curing glass ionomer. Group 2 : Bonded Amalgam to light curing glass ionomer cement with liquid of chemical curing glass ionomer. Group 3: Bonded Amalgam to light curing glass ionomer cement with resin cement. Group 4: Bonded Amalgam to light curing glass ionomer cement with light curing dentin adhesive. Group 5: Bonded Amdlgam to light curing glass ionomer cement with liquid of light curing glass ionomer. Group 6: Bonded Amalgam to light curing glass ionomer cement with uncured mixture of light curing glass ionomer cement. 30 minutes after amalgam condensation, all specimens were stored for 24 hours in water at $37^{\circ}C$ and tested with Instron (1122). The following results obtained: 1. The shear bond strength of group 6 was higher than those of the other groups (46.7 kgf/$cm^2$, p<0.05). 2. The shear bond strength of resin cement intermediary group was lower than that of the group using uncured mixture of light curing glass ionomer cement. 3. The results of group 1 and group 2 were different, even though the inter-me diaries used were same. 4. Intermediary of Group 5 did not show complete set in Scanning Electromicroscopic examination. 5. Light-curing dentin adhesive did not show any bonding ability to amalgam.

  • PDF