• Title/Summary/Keyword: school algebra

Search Result 265, Processing Time 0.028 seconds

An Analysis of Students' Understanding of Mathematical Concepts and Proving - Focused on the concept of subspace in linear algebra - (대학생들의 증명 구성 방식과 개념 이해에 대한 분석 - 부분 공간에 대한 증명 과정을 중심으로 -)

  • Cho, Jiyoung;Kwon, Oh Nam
    • School Mathematics
    • /
    • v.14 no.4
    • /
    • pp.469-493
    • /
    • 2012
  • The purpose of this study is find the relation between students' concept and types of proof construction. For this, four undergraduate students majored in mathematics education were evaluated to examine how they understand mathematical concepts and apply their concepts to their proving. Investigating students' proof with their concepts would be important to find implications for how students have to understand formal concepts to success in proving. The participants' proof productions were classified into syntactic proof productions and semantic proof productions. By comparing syntactic provers and semantic provers, we could reveal that the approaches to find idea for proof were different for two groups. The syntactic provers utilized procedural knowledges which had been accumulated from their proving experiences. On the other hand, the semantic provers made use of their concept images to understand why the given statements were true and to get a key idea for proof during this process. The distinctions of approaches to proving between two groups were related to students' concepts. Both two types of provers had accurate formal concepts. But the syntactic provers also knew how they applied formal concepts in proving. On the other hand, the semantic provers had concept images which contained the details and meaning of formal concept well. So they were able to use their concept images to get an idea of proving and to express their idea in formal mathematical language. This study leads us to two suggestions for helping students prove. First, undergraduate students should develop their concept images which contain meanings and details of formal concepts in order to produce a meaningful proof. Second, formal concepts with procedural knowledge could be essential to develop informal reasoning into mathematical proof.

  • PDF

Analysis of Research Trends in SIAM Journal on Applied Mathematics Using Topic Modeling (토픽모델링을 활용한 SIAM Journal on Applied Mathematics의 연구 동향 분석)

  • Kim, Sung-Yeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.607-615
    • /
    • 2020
  • The purpose of this study was to analyze the research status and trends related to the industrial mathematics based on text mining techniques with a sample of 4910 papers collected in the SIAM Journal on Applied Mathematics from 1970 to 2019. The R program was used to collect titles, abstracts, and key words from the papers and to analyze topic modeling techniques based on LDA algorithm. As a result of the coherence score on the collected papers, 20 topics were determined optimally using the Gibbs sampling methods. The main results were as follows. First, studies on industrial mathematics were conducted in a variety of mathematics fields, including computational mathematics, geometry, mathematical modeling, topology, discrete mathematics, probability and statistics, with a focus on analysis and algebra. Second, 5 hot topics (mathematical biology, nonlinear partial differential equation, discrete mathematics, statistics, topology) and 1 cold topic (probability theory) were found based on time series regression analysis. Third, among the fields that were not reflected in the 2015 revised mathematics curriculum, numeral system, matrix, vector in space, and complex numbers were extracted as the contents to be covered in the high school mathematical curriculum. Finally, this study suggested strategies to activate industrial mathematics in Korea, described the study limitations, and proposed directions for future research.

A Case Study on the Students' Covariational Reasoning in the Continuous Functional Situations (함수적 상황에 대한 초등학생들의 공변추론 사례연구)

  • Hur, Joonho;Park, Mangoo
    • Education of Primary School Mathematics
    • /
    • v.21 no.1
    • /
    • pp.55-73
    • /
    • 2018
  • The purpose of this study is to investigate the effects of cognitive activity on cognitive activities that students imagine and cope with continuously changing quantitative changes in functional tasks represented by linguistic expressions, table of value, and geometric patterns, We identified covariational reasoning levels and investigated the characteristics of students' reasoning process according to the levels of covariational reasoning in the elementary quantitative problem situations. Participants were seven 4th grade elementary students using the questionnaires. The selected students were given study materials. We observed the students' activity sheets and conducted in-depth interviews. As a result of the study, the students' covariational reasoning level for two quantities that are continuously covaried was found to be five, and different reasoning process was shown in quantitative problem situations according to students' covariational reasoning levels. In particular, students with low covariational level had difficulty in grasping the two variables and solved the problem mainly by using the table of value, while the students with the level of chunky and smooth continuous covariation were different from those who considered the flow of time variables. Based on the results of the study, we suggested that various problems related with continuous covariation should be provided and the meanings of the tasks should be analyzed by the teachers.

Symbol Sense Analysis on 6th Grade Elementary School Mathematically Able Students (초등학교 6학년 수학 우수아들의 대수 기호 감각 실태 분석)

  • Cho, Su-Gyoung;Song, Sang-Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.3
    • /
    • pp.937-957
    • /
    • 2010
  • The purpose of this study is to discover the features of symbol sense. This study tries to sum up the meaning and elements of symbol sense and the measures to improve them through documents. Also based on this, it analyzes the learning conditions about symbol sense for 6th grade mathematically able students and suggests the method that activates symbol sense in the math of elementary schools. Considering various studies on symbol sense, symbol sense means the exact knowledge and essential understanding in a comprehensive way. Symbol sense is an intuition about symbols that grasps the meaning of symbols, understands the situation of question, and realizes the usefulness of symbols in resolving a process. Considering all other scholars' opinions, this study sums up 5 elements of the symbol sense. (The recognition of needs to introduce symbol, ability to read the meaning of symbols, choice of suitable symbols according to the context, pattern guess through visualization, recognize the role of symbols in other context) This study draws the following conclusions after applying the symbol questionnaires targeting 6th grade mathematically able students : First, although they are math talents, there are some differences in terms of the symbol sense level. Second, 5 elements of the symbol sense are not completely separated. They are rather closely related in terms of mainly the symbol understanding, thereby several elements are combined.

  • PDF

Use of ChatGPT in college mathematics education (대학수학교육에서의 챗GPT 활용과 사례)

  • Sang-Gu Lee;Doyoung Park;Jae Yoon Lee;Dong Sun Lim;Jae Hwa Lee
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • This study described the utilization of ChatGPT in teaching and students' learning processes for the course "Introductory Mathematics for Artificial Intelligence (Math4AI)" at 'S' University. We developed a customized ChatGPT and presented a learning model in which students supplement their knowledge of the topic at hand by utilizing this model. More specifically, first, students learn the concepts and questions of the course textbook by themselves. Then, for any question they are unsure of, students may submit any questions (keywords or open problem numbers from the textbook) to our own ChatGPT at https://math4ai.solgitmath.com/ to get help. Notably, we optimized ChatGPT and minimized inaccurate information by fully utilizing various types of data related to the subject, such as textbooks, labs, discussion records, and codes at http://matrix.skku.ac.kr/Math4AI-ChatGPT/. In this model, when students have questions while studying the textbook by themselves, they can ask mathematical concepts, keywords, theorems, examples, and problems in natural language through the ChatGPT interface. Our customized ChatGPT then provides the relevant terms, concepts, and sample answers based on previous students' discussions and/or samples of Python or R code that have been used in the discussion. Furthermore, by providing students with real-time, optimized advice based on their level, we can provide personalized education not only for the Math4AI course, but also for any other courses in college math education. The present study, which incorporates our ChatGPT model into the teaching and learning process in the course, shows promising applicability of AI technology to other college math courses (for instance, calculus, linear algebra, discrete mathematics, engineering mathematics, and basic statistics) and in K-12 math education as well as the Lifespan Learning and Continuing Education.