• Title/Summary/Keyword: scheduling optimization

Search Result 451, Processing Time 0.129 seconds

Generating unit Maintenance Scheduling based on PSO Algorithm (PSO알고리즘에 기초한 발전기 보수정지)

  • Park, Young-Soo;Kim, Jin-Ho;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.222-224
    • /
    • 2006
  • This paper addresses a particle swarm optimization-based approach for solving a generating unit maintenance scheduling problem(GMS) with some constraints. We focus on the power system reliability such as reserve ratio better than cost function as the objective function of GMS problem. It is shown that particle swarm optimization-based method is effective in obtaining feasible schedules such as GMS problem related to power system planning and operation. In this paper, we find the optimal solution of the GMS problem within a specific time horizon using particle swarm optimization algorithm. Simple case study with 16-generators system is applicable to the GMS problem. From the result, we can conclude that PSO is enough to look for the optimal solution properly in the generating unit maintenance scheduling problem.

  • PDF

Performance Analysis of Local Optimization Algorithms in Resource-Constrained Project Scheduling Problem (자원제약 프로젝트 스케쥴링 문제에 적용 가능한 부분 최적화 방법들의 성능 분석)

  • Yim, Dong-Soon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.408-414
    • /
    • 2011
  • The objective of this paper is to define local optimization algorithms (LOA) to solve Resource-Constrained Project Scheduling Problem (RCPSP) and analyze the performance of these algorithms. By representing solutions with activity list, three primitive LOAs, i.e. forward and backward improvement-based, exchange-based, and relocation-based LOAs are defined. Also, combined LOAs integrating two primitive LOAs are developed. From the experiments with standard test set J120 generated using ProGen, the FBI-based LOA demonstrates to be an efficient algorithm. Moreover, algorithms combined with FBI-based LOA and other LOA generate good solutions in general. Among the considered algorithms, the combined algorithm of FBI-based and exchangebased shows best performance in terms of solution quality and computation time.

Optimization of the Satellite Mission Scheduling Using Genetic Algorithms (유전 알고리즘을 이용한 위성 임무 스케줄링 최적화)

  • Han, Soon-Mi;Baek, Seung-Woo;Jo, Seon-Yeong;Cho, Kyeum-Rae;Lee, Dae-Woo;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1163-1170
    • /
    • 2008
  • A mission scheduling optimization algorithm according to the purpose of satellite operations is developed using genetic algorithm. Satellite mission scheduling is making a timetable of missions which are slated to be performed. It is essential to make an optimized timetable considering related conditions and parameters for effective mission performance. Thus, as important criterions and parameters related to scheduling vary with the purpose of satellite operation, those factors should be fully considered and reflected when the satellite mission scheduling algorithm is developed. The developed algorithm in this study is implemented and verified through a comprehensive simulation study. As a result, it is shown that the algorithm can be applied into various type of the satellite mission operations.

Determination of optimum cyclic scheduling of PSR processes (PSR 공정의 최적 Cyclic Scheduling 결정)

  • Hwang, Deok-Jae;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.808-811
    • /
    • 1996
  • A mathematical model was developed for the simulation of a Pressure Swing Adsorption process with dehydrogenation reaction. The minimum number of beds and optimum operating sequence were determined using MINLP under the given operating conditions. Based on these results, we estimated the minimum annual cost.

  • PDF

Efficient Satellite Mission Scheduling Problem Using Particle Swarm Optimization (입자 군집 최적화 방법론을 이용한 효율적 위성임무 일정 수립에 관한 연구)

  • Lee, Youngin;Lee, Kangwhan;Seo, Inwoo;Ko, Sung-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • We consider a satellite mission scheduling problem, which is a promising problem in recent satellite industry. This problem has various considerations such as customer importance, due date, limited capacity of energy and memory, distance of the location of each mission, etc. Also we consider the objective of each satellite such as general purpose satellite, strategic mission and commercial satellite. And this problem can be modelled as a general knapsack problem, which is famous NP-hard problem, if the objective is defined as to maximize the total mission score performed. To solve this kind of problem, heuristic algorithm such as taboo and genetic algorithm are applied and their performance are acceptable in some extent. To propose more efficient algorithm than previous research, we applied a particle swarm optimization algorithm, which is the most promising method in optimization problem recently in this research. Owing to limitation of current study in obtaining real information and several assumptions, we generated 200 satellite missions with required information for each mission. Based on generated information, we compared the results by our approach algorithm with those of CPLEX. This comparison shows that our proposed approach give us almost accurate results as just less than 3% error rate, and computation time is just a little to be applied to real problem. Also this algorithm has enough scalability by innate characteristic of PSO. We also applied it to mission scheduling problem of various class of satellite. The results are quite reasonable enough to conclude that our proposed algorithm may work in satellite mission scheduling problem.

Optimization of Home Loads scheduling in Demand Response (수요 반응에서 가정용 전력기계의 최적화된 스케쥴링 기법)

  • Kim, Tae-Wan;Lee, Sung-Jin;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1407-1415
    • /
    • 2010
  • In recent years, the smart grid technique for maximizing the energy efficiency of power networks has received a great deal of attentions. In particular, the Demand Response is a core technology differentiated from the present power network under the smart grid paradigm. To minimize the electric cost and maximize users' satisfaction, this paper proposes a unique scheduling algorithm derived by using optimization where the characteristics of various home appliances are taken into account. For this goal, we represent mathematical consumption patterns of the electric loads and propose the optimal scheduling scheme based on the importance factor of each device during one day. In the simulation results, we demonstrate the effectiveness of the proposed algorithm in the viewpoint of the minimal electric costs utilizing real statistical figures.

Schedule Optimization in Resource Leveling through Open BIM Based Computer Simulations

  • Kim, Hyun-Joo
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this research, schedule optimization is defined as balancing the number of workers while keeping the demand and needs of the project resources, creating the perfect schedule for each activity. Therefore, when one optimizes a schedule, multiple potentials of schedule changes are assessed to get an instant view of changes that avoid any over and under staffing while maximizing productivity levels for the available labor cost. Optimizing the number of workers in the scheduling process is not a simple task since it usually involves many different factors to be considered such as the development of quantity take-offs, cost estimating, scheduling, direct/indirect costs, and borrowing costs in cash flow while each factor affecting the others simultaneously. That is why the optimization process usually requires complex computational simulations/modeling. This research attempts to find an optimal selection of daily maximum workers in a project while considering the impacts of other factors at the same time through OPEN BIM based multiple computer simulations in resource leveling. This paper integrates several different processes such as quantity take-offs, cost estimating, and scheduling processes through computer aided simulations and prediction in generating/comparing different outcomes of each process. To achieve interoperability among different simulation processes, this research utilized data exchanges supported by building SMART-IFC effort in automating the data extraction and retrieval. Numerous computer simulations were run, which included necessary aspects of construction scheduling, to produce sufficient alternatives for a given project.

Energy efficiency task scheduling for battery level-aware mobile edge computing in heterogeneous networks

  • Xie, Zhigang;Song, Xin;Cao, Jing;Xu, Siyang
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.746-758
    • /
    • 2022
  • This paper focuses on a mobile edge-computing-enabled heterogeneous network. A battery level-aware task-scheduling framework is proposed to improve the energy efficiency and prolong the operating hours of battery-powered mobile devices. The formulated optimization problem is a typical mixed-integer nonlinear programming problem. To solve this nondeterministic polynomial (NP)-hard problem, a decomposition-based task-scheduling algorithm is proposed. Using an alternating optimization technology, the original problem is divided into three subproblems. In the outer loop, task offloading decisions are yielded using a pruning search algorithm for the task offloading subproblem. In the inner loop, closed-form solutions for computational resource allocation subproblems are derived using the Lagrangian multiplier method. Then, it is proven that the transmitted power-allocation subproblem is a unimodal problem; this subproblem is solved using a gradient-based bisection search algorithm. The simulation results demonstrate that the proposed framework achieves better energy efficiency than other frameworks. Additionally, the impact of the battery level-aware scheme on the operating hours of battery-powered mobile devices is also investigated.

Long-Term Container Allocation via Optimized Task Scheduling Through Deep Learning (OTS-DL) And High-Level Security

  • Muthakshi S;Mahesh K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1258-1275
    • /
    • 2023
  • Cloud computing is a new technology that has adapted to the traditional way of service providing. Service providers are responsible for managing the allocation of resources. Selecting suitable containers and bandwidth for job scheduling has been a challenging task for the service providers. There are several existing systems that have introduced many algorithms for resource allocation. To overcome these challenges, the proposed system introduces an Optimized Task Scheduling Algorithm with Deep Learning (OTS-DL). When a job is assigned to a Cloud Service Provider (CSP), the containers are allocated automatically. The article segregates the containers as' Long-Term Container (LTC)' and 'Short-Term Container (STC)' for resource allocation. The system leverages an 'Optimized Task Scheduling Algorithm' to maximize the resource utilisation that initially inquires for micro-task and macro-task dependencies. The bottleneck task is chosen and acted upon accordingly. Further, the system initializes a 'Deep Learning' (DL) for implementing all the progressive steps of job scheduling in the cloud. Further, to overcome container attacks and errors, the system formulates a Container Convergence (Fault Tolerance) theory with high-level security. The results demonstrate that the used optimization algorithm is more effective for implementing a complete resource allocation and solving the large-scale optimization problem of resource allocation and security issues.