• Title/Summary/Keyword: scheduling delay

Search Result 510, Processing Time 0.025 seconds

Novel Section-Based Joint Network Coding and Scheduling Scheme in WMNs: JNCS

  • Cha, Jae Ryong;Baek, Gwang Hun
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.380-386
    • /
    • 2015
  • Guaranteeing quality of service over a multihop wireless network is difficult because end-to-end (ETE) delay is accumulated at each hop in a multihop flow. Recently, research has been conducted on network coding (NC) schemes as an alternative mechanism to significantly increase the utilization of valuable resources in multihop wireless networks. This paper proposes a new section-based joint NC and scheduling scheme that can reduce ETE delay and enhance resource efficiency in a multihop wireless network. Next, this paper derives the average ETE delay of the proposed scheme and simulates a TDMA network where the proposed scheme is deployed. Finally, this paper compares the performance of the proposed scheme with that of the conventional sequential scheduling scheme. From the performance analysis and simulation results, the proposed scheme gives more delay-and energy-efficient slot assignments even if the NC operation is applied, resulting in a use of fewer network resources and a reduction in ETE delay.

A QoS-aware Scheduling Algorithm for Multiuser Diversity MIMO-OFDM System (다중 사용자 MIMO-OFDM 시스템에서의 QoS 제공을 위한 스케줄링 기법)

  • An Se-Hyun;Yoo Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.717-724
    • /
    • 2006
  • In order to maximize the throughput and provide the fairness between users in MIMO-OFDM system, FATM(fairness-aware throughput maximization) scheduling algorithm was proposed. In this paper, a QoS-aware scheduling algorithms for MINO-OFDM system are proposed, each of which is based on FATM. These scheduling algorithms aim to satisfy the different service requirements of various service classes. Three proposed QoS scheduling algorithms called SPQ (Strict Priority Queueing), DCBQ (Delay Constraint Based Queuing), HDCBQ (Hybrid Delay Constraint Based Queuing) are compared through computer simulations. It is shown that HDCBQ algorithm outperforms other algorithms in satisfying different requirements of various service classes.

Channel-Based Scheduling Policy for QoS Guarantees in Wireless Links

  • Kim Jeong Geun;Hong Een-Kee
    • Journal of Internet Computing and Services
    • /
    • v.5 no.6
    • /
    • pp.11-20
    • /
    • 2004
  • Proportional Fair (PF) share policy has been adopted as a downlink scheduling scheme in CDMA2000 l×EV-DO standard. Although It offers optimal performance in aggregate throughput conditioned on equal time share among users, it cannot provide a bandwidth guarantee and a strict delay bound. which is essential requirements of real-time (RT) applications. In this study, we propose a new scheduling policy that provides quality-of-service (QoS) guarantees to a variety of traffic types demanding diverse service requirements. In our policy data traffic is categorized Into three classes, depending on sensitivity of Its performance to delay or throughput. And the primary components of our policy, namely, Proportional Fair (PF), Weighted Fair Queuing (WFQ), and delay-based prioritized scheme are intelligently combined to satisfy QoS requirements of each traffic type. In our policy all the traffic categories run on the PF policy as a basis. However the level of emphasis on each of those ingredient policies is changed in an adaptive manner by taking into account the channel conditions and QoS requirements. Such flexibility of our proposed policy leads to offering QoS guarantees effectively and. at the same time, maximizing the throughput. Simulations are used to verify the performance of the proposed scheduling policy. Experimental results show that our proposal can provide guaranteed throughput and maximum delay bound more efficiently compared to other policies.

  • PDF

A Study on Low Power Force-Directed scheduling for Optimal module selection Architecture Synthesis (최적 모듈 선택 아키텍쳐 합성을 위한 저전력 Force-Directed 스케쥴링에 관한 연구)

  • Choi Ji-young;Kim Hi-seok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.459-462
    • /
    • 2004
  • In this paper, we present a reducing power consumption of a scheduling for module selection under the time constraint. A a reducing power consumption of a scheduling for module selection under the time constraint execute scheduling and allocation for considering the switching activity. The focus scheduling of this phase adopt Force-Directed Scheduling for low power to existed Force-Directed Scheduling. and it constructs the module selection RT library by in account consideration the mutual correlation of parameters in which the power and the area and delay. when it is, in this paper we formulate the module selection method as a multi-objective optimization and propose a branch and bound approach to explore the large design space of module selection. Therefore, the optimal module selection method proposed to consider power, area, delay parameter at the same time. The comparison experiment analyzed a point of difference between the existed FDS algorithm and a new FDS_RPC algorithm.

  • PDF

Performance Analysis of Transmission rate Scheduling Schemes for non-real Service in Burst-Switching (DS/CDMA) System (버스트 교환 방식 CDMA 시스템에서의 패킷 데이터 서비스를 위한 전송률 스케줄링 기법 비교 분석)

  • 김미정;김수원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5A
    • /
    • pp.574-582
    • /
    • 2004
  • This paper shows the performance comparisons of several different rate scheduling schemes for non-real time data service over the uplink of burst switching-based direct sequencecode division multiple access (DS/CDMA) system to support the integrated voice/data service. The closed-form solution of optimal scheduling formulation, which minimizes average transmission delay when all of the active data users are transmitting simultaneously, is presented and mathematical analyses with other rate scheduling schemes, which provide efficiency criterion of transmission delay for rate scheduling schemes, are performed. Numerical results show the analyses explicitly.

A Hexagon Model-based Efficient Beacon Scheduling Approach for Wireless Sensor Networks

  • Lee, Taekkyeun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.43-50
    • /
    • 2018
  • In this paper, we propose a hexagon model-based efficient beacon frame scheduling approach for wireless sensor networks. The existing beacon frame scheduling approaches use a lot of slots and subslots for the beacon frame scheduling. Thus, the data from source nodes are not efficiently delivered to a sink node. Also in case a sink node needs to broadcast a beacon frame to the nodes in the network, delivering the beacon frame to the network nodes is not efficient as well. Thus, to solve the problem, we use a hexagon model to find the number of slots and subslots for the beacon frame scheduling. By using them for the beacon frame scheduling, the proposed approach performs better than other approaches in terms of the data transmission delay, the number of received data, the beacon transmission delay and the number of relaying the beacon frames.

Packet Scheduling Algorithm Considering Maximum Delay Tolerance for HSDPA System

  • Hur, Soojung;Jakhongil, Narzullaev;Park, Yong-Wan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.311-318
    • /
    • 2013
  • In this paper, we consider a new packet scheduling algorithm for real-time traffic in the HSDPA system that has been introduced for the WCDMA system, in order to provide high transmission rates. The objective of the design is to meet the maximum tolerable delay and consider channel assignment based on the received SIR for real-time traffic users. The proposed scheduling algorithm shows that the users are ranked by the ratios of the bits in the buffer to the residual time for transmission as priority order; then the ranked users are assigned certain number of channels based on the SIR value table. The simulation results show that the proposed algorithm can provide a lower packet drop rate, and satisfy real time quality of service (QoS) requirements.

Flow Assignment and Packet Scheduling for Multipath Routing

  • Leung, Ka-Cheong;Victor O. K. Li
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.230-239
    • /
    • 2003
  • In this paper, we propose a framework to study how to route packets efficiently in multipath communication networks. Two traffic congestion control techniques, namely, flow assignment and packet scheduling, have been investigated. The flow assignment mechanism defines an optimal splitting of data traffic on multiple disjoint paths. The resequencing delay and the usage of the resequencing buffer can be reduced significantly by properly scheduling the sending order of all packets, say, according to their expected arrival times at the destination. To illustrate our model, and without loss of generality, Gaussian distributed end-to-end path delays are used. Our analytical results show that the techniques are very effective in reducing the average end-to-end path delay, the average packet resequencing delay, and the average resequencing buffer occupancy for various path configurations. These promising results can form a basis for designing future adaptive multipath protocols.

Prioritized Dynamic Rate Scheduling for Interactive GEO Satellite Networks (대화형 GEO 위성 네트워크를 위한 우선권기반 동적 데이터 전송률 스케줄링 체계)

  • Chang, Kun-Nyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.1-15
    • /
    • 2007
  • In this paper, the return link of interactive GEO satellite network providing multimedia services is considered. First, we classify data by delay characteristics, and analyze the numbers of expected lost packets and expected delay packets for each data class of each terminal. Next we mathematically formulate optimal rate scheduling model to minimize the weighted sum of the numbers of expected lost packets and expected delay packets considering priority of each data class. We also suggest a dynamic rate scheduling scheme based on Lagrangean relaxation technique and subgradient technique to solve the proposed model in a fast time. Extensive experiments show that the proposed scheme provides encouraging results.

Parallel Video Processing Using Divisible Load Scheduling Paradigm

  • Suresh S.;Mani V.;Omkar S. N.;Kim H.J.
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.83-102
    • /
    • 2005
  • The problem of video scheduling is analyzed in the framework of divisible load scheduling. A divisible load can be divided into any number of fractions (parts) and can be processed/computed independently on the processors in a distributed computing system/network, as there are no precedence relationships. In the video scheduling, a frame can be split into any number of fractions (tiles) and can be processed independently on the processors in the network, and then the results are collected to recompose the single processed frame. The divisible load arrives at one of the processors in the network (root processor) and the results of the computation are collected and stored in the same processor. In this problem communication delay plays an important role. Communication delay is the time to send/distribute the load fractions to other processors in the network. and the time to collect the results of computation from other processors by the root processors. The objective in this scheduling problem is that of obtaining the load fractions assigned to each processor in the network such that the processing time of the entire load is a minimum. We derive closed-form expression for the processing time by taking Into consideration the communication delay in the load distribution process and the communication delay In the result collection process. Using this closed-form expression, we also obtain the optimal number of processors that are required to solve this scheduling problem. This scheduling problem is formulated as a linear pro-gramming problem and its solution using neural network is also presented. Numerical examples are presented for ease of understanding.