• Title/Summary/Keyword: scattering cross section

Search Result 156, Processing Time 0.027 seconds

Electromagnetic Scattering Analysis from Inhomogeneous Material Scatterers (불균질 매질내에서의 전자파 산란 해석)

  • 김태용;김석재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.478-484
    • /
    • 2003
  • The electromagnetic wave scattering problems from inhomogeneous material bodies are considered. The formulation is made in terms of mixed potentials for the moment methods (MoM). The surfaces of a three-dimensional inhomogeneous scatterer of arbitrary shape are divide into triangular patches for descretization. Application of the boundary conditions leads to the coupled surface integral equations to be satisfied for the unknown surface equivalent electric and magnetic currents. The radar cross-section (RCS) for some structures is computed and the results are compared with the reported data.

Computation of Radar Cross Section from Arbitrarily Shaped Composite Objects Using Combined Field Integral Equation (결합 적분방정식을 이용한 임의 형태 복합구조의 레이더 단면적 산출)

  • 한상호;정백호;윤희상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, we present a new combined field integral equation (CFIE) formulation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional perfectly conducting and piecewise homogeneous dielectric composite body. The conducting/dielectric structures are approximated by planar triangular patches, which have the ability to conform to any geometrical surface. The surface covering the conducting body is replaced by an equivalent surface electric current and the surface of the dielectric by equivalent electric and magnetic currents. The all equivalent currents are approximated in terms of RWG (Rao, Wilton, Glisson) functions. The objective of this paper is to illustrate that the CFIE is a valid methodology in removing defects, which occur at a frequency corresponding to an internal resonance of the structure. Numerical results are presented and compared with solutions obtained using other formulations.

A Study on the Dipole Chaff RCS for Aircraft (항공기용 다이폴 채프의 RCS에 관한 연구)

  • Lim, Joong-Soo;Kim, Min-Nyun;Chae, Gyoo-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.690-694
    • /
    • 2008
  • In this paper, the computation of electromagnetic wave scattering is presented for chaff clouds which is widely used to protect an aircraft. The RCS depends on the wind, the aircraft velocity, and the atmospheric diffusion. It is assumed that the RF chaff is a thin dipole antenna and the RCS is calculated based on the scattering wave theory. The theoretical estimation and the simulation results are compared and shown a good agreement.

Scattering characteristics of metal and dielectric optical nano-antennas

  • Ee, Ho-Seok;Lee, Eun-Khwang;Song, Jung-Hwan;Kim, Jinhyung;Seo, Min-Kyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.76.1-76.1
    • /
    • 2015
  • Optical resonances of metallic or dielectric nanoantennas enable to effectively convert free-propagating electromagnetic waves to localized electromagnetic fields and vice versa. Plasmonic resonances of metal nanoantennas extremely modify the local density of optical states beyond the optical diffraction limit and thus facilitate highly-efficient light-emitting, nonlinear signal conversion, photovoltaics, and optical trapping. The leaky-mode resonances, or termed Mie resonances, allow dielectric nanoantennas to have a compact size even less than the wavelength scale. The dielectric nanoantennas exhibiting low optical losses and supporting both electric and magnetic resonances provide an alternative to their metallic counterparts. To extend the utility of metal and dielectric nanoantennas in further applications, e.g. metasurfaces and metamaterials, it is required to understand and engineer their scattering characteristics. At first, we characterize resonant plasmonic antenna radiations of a single-crystalline Ag nanowire over a wide spectral range from visible to near infrared regions. Dark-field optical microscope and direct far-field scanning measurements successfully identify the FP resonances and mode matching conditions of the antenna radiation, and reveal the mutual relation between the SPP dispersion and the far-field antenna radiation. Secondly, we perform a systematical study on resonant scattering properties of high-refractive-index dielectric nanoantennas. In this research, we examined Si nanoblock and electron-beam induced deposition (EBID) carbonaceous nanorod structures. Scattering spectra of the transverse-electric (TE) and transverse-magnetic (TM) leaky-mode resonances are measured by dark-field microscope spectroscopy. The leaky-mode resonances result a large scattering cross section approaching the theoretical single-channel scattering limit, and their wide tuning ranges enable vivid structural color generation over the full visible spectrum range from blue to green, yellow, and red. In particular, the lowest-order TM01 mode overcomes the diffraction limit. The finite-difference time-domain method and modal dispersion model successfully reproduce the experimental results.

  • PDF

Evaluation of Neutron Cross Sections of Dy Isotopes in the Resonance Region

  • Oh, Soo-Youl;Gil, Choong-Sup;Jonghwa Chang
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.46-61
    • /
    • 2001
  • The neutron cross sections of $^{160}$ Dy, $^{161}$ Dy, $^{162}$ Dy, $^{l63}$Dy, and $^{164}$ Dy have been evaluated in the resonance region of which upper energy is set to several tens of keV. The cross sections are formulated with resonance parameters in the energy region under consideration. In the resolved resonance region, the positive-energy resonance parameters were adopted from the BNL compilation published in 1984 with slight, if any, modifications. A bound level resonance for each isotope except $^{162}$ Dy was invoked to reproduce the reference 2200 m/s cross sections and the bound coherent scattering length. Subsequently, the statistical behavior of the resolved resonance parameters was analyzed, and thus obtained s-wave average parameters were adopted in the unresolved resonance region. In addition, recent measurements of the capture cross sections in the unresolved region were taken into account in adjusting the average resonance parameters for high orbital angular momentum resonances. The present evaluation resulted in large improvements in the cross sections over the ENDF/B-Vl release 6.6.

  • PDF

Deep Levels in Semi-Insulating GaAs : Cr and Undoped GaAs (SI GaAs : Cr과 Undoped GaAs의 깊은 준위)

  • Rhee, Jin-Koo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1294-1303
    • /
    • 1988
  • Electron and hole traps in semi-insulating GaAs with activation energies ({\Delta}E_r) ranging from 0.16 $\pm$ 0.01 to 0.98 $\pm$ 0.01 eV, have been detected and characterized by photo-induced current transient measurements. SI undoped GaAs has fewer deep levels than SI GaAs: Cr. The thermal capture cross section and density of the traps have been estimated and some of the centers have been related to native defects. In particular, the activation energy of the compensating Cr, and "0" levels in semi-insulating GaAs were accurately measured. The transient measurements were complemented by Hall measurements at T > 300K and photocurrent spectra measurements. The transition energies for the deep compensating levels obtained by the analyses of data from these measurements, when compared with those from the transient measurements, indicate negligible lattice-coupling of these centers. Analysis of the transport data also indicates that neutral impurity scattering plays a significant role in semi-insulating materials at high temperatures.

  • PDF

Multifrequency acoustic scattering characteristics of jack mackerel by KRM model (KRM 모델을 이용한 전갱이의 다주파수 음향산란특성)

  • HWANG, Kangseok;YOON, Eun-A;LEE, Kyounghoon;LEE, Hyungbeen;HWANG, Doo-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.424-431
    • /
    • 2015
  • This study was focused on acoustic scattering characteristics of jack mackerel (Trachurus japonicus) at frequency 38, 70, and 120 kHz by Kirchhoff-ray mode (KRM) model. The body length (BL) of 16 individuals ranged in 12.2~22.0 cm ($mean{\pm}S.D.$: $17.8{\pm}3.2cm$) and the swimbladder length ranged in 4.2~8.6 cm ($mean{\pm}S.D.$: $6.6{\pm}1.6cm$) and the swimbladder cross section ranged in $1.7{\sim}6.6cm^2$ ($mean{\pm}S.D.$: $3.8{\pm}1.6cm^2$). This result shows that results correlate well between the BL and the length and cross section of swimbladder. The swimbladder angle ranged in $7{\sim}12^{\circ}$ and the maximum TS values ranged in $-16{\sim}-5^{\circ}$ at tilt angle. The averaged TS-to-BL relationship were $TS_{38kHz}=20{\log}_{10}BL-65.33$ ($R^2=0.66$), $TS_{70kHz}=20{\log}_{10}BL-65.90$ ($R^2=0.67$), and $TS_{120kHz}=20{\log}_{10}BL-66.65$ ($R^2=0.65$). These results can be used fundamental data in order to estimate distribution and biomass of jack mackerel by using hydro-acoustic method.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도의 계측)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the problem of Mie scattering interference, a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. The results show that LRS can provide useful informations about concentration field and the software filter is very effective method to remove Mie interference.

  • PDF

Surface-Enhanced Raman Scattering and DFT Study of 4,4'-Biphenyldithiol on Silver Surface

  • Lee, Yu Ran;Kim, Myung Soo;Kwon, Chan Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.470-474
    • /
    • 2013
  • Surfaced-enhanced Raman scattering (SERS) of 4,4'-biphenyldithiol (BPDT) has been investigated at a silver island film. Ordinary Raman (OR) spectra of neat sample in solid state and in basic solution have also been taken for comparison. The spectral feature in the SERS spectrum was similar to that for the OR spectrum in basic solution, except for the broadening of ring stretching bands indicative of the presence of surface-phenyl ring $\pi$ interaction. In contrast, only absence of the C-H stretching band with very small Raman scattering cross-section seemed not pertinent in judging the definitive orientation of molecule. The observed vibrational bands in the SERS spectrum have been assigned by referring to the normal modes and wavenumbers from density functional theory (DFT) calculations of the simple model as 4,4'-biphenyldithiolates bound to two Ag atoms at the both ends. Excellent agreement between the experimental and the calculated results was achieved, which is remarkable considering the level of theory applied.

A Study of Accuracy Improvement for Scattering Analysis of FMM Method (FMM 기법의 산란해석 정확도 향상 연구)

  • Kim, Young-joo;Cho, Young-Ki;Son, Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.972-982
    • /
    • 2001
  • FMM(Fast Multipole Method) is suitable numerical method for radar cross section calculation of arbitrary large conducting bodies due to reduction of computation time. The accuracy of the numerical results, however, can influenced by selection of grouping method and segment length, in particular, far the case that cross section of the scatter is of the narrow width elliptical type. So, we describe the FMM method which can be deal effectively with such difficulties for both TM and TE polarization case. In order to check the present method the results are compared with those obtained by Method of Moments.

  • PDF