DOI QR코드

DOI QR Code

Surface-Enhanced Raman Scattering and DFT Study of 4,4'-Biphenyldithiol on Silver Surface

  • Lee, Yu Ran (Department of Chemistry and Institute for Molecular Science and Fusion Technology, College of Natural Sciences, Kangwon National University) ;
  • Kim, Myung Soo (Department of Chemistry, Seoul National University) ;
  • Kwon, Chan Ho (Department of Chemistry and Institute for Molecular Science and Fusion Technology, College of Natural Sciences, Kangwon National University)
  • Received : 2012.11.01
  • Accepted : 2012.11.16
  • Published : 2013.02.20

Abstract

Surfaced-enhanced Raman scattering (SERS) of 4,4'-biphenyldithiol (BPDT) has been investigated at a silver island film. Ordinary Raman (OR) spectra of neat sample in solid state and in basic solution have also been taken for comparison. The spectral feature in the SERS spectrum was similar to that for the OR spectrum in basic solution, except for the broadening of ring stretching bands indicative of the presence of surface-phenyl ring $\pi$ interaction. In contrast, only absence of the C-H stretching band with very small Raman scattering cross-section seemed not pertinent in judging the definitive orientation of molecule. The observed vibrational bands in the SERS spectrum have been assigned by referring to the normal modes and wavenumbers from density functional theory (DFT) calculations of the simple model as 4,4'-biphenyldithiolates bound to two Ag atoms at the both ends. Excellent agreement between the experimental and the calculated results was achieved, which is remarkable considering the level of theory applied.

Keywords

References

  1. Fleishman, M.; Hendra, P. J.; McQuillan, A. Chem. Phys. Lett. 1974, 26, 163. https://doi.org/10.1016/0009-2614(74)85388-1
  2. Otto, A. J. Raman Spectrosc. 2002, 33, 593. https://doi.org/10.1002/jrs.879
  3. Jiang, J.; Bosnick, K.; Maillard, M.; Brus, L. J. Phys. Chem. B 2003, 107, 9964.
  4. Lombardi, J. R.; Birke, R. L. J. Phys. Chem. C 2008, 112, 5605. https://doi.org/10.1021/jp800167v
  5. Lombardi, J. R.; Birke, R. L. Acc. Chem. Res. 2009, 42, 734. https://doi.org/10.1021/ar800249y
  6. Kneipp, K.; Moskovits, M.; Kneipp, H. Surface Enhanced Raman Scattering; Springer: Berlin, 2006.
  7. Creighton, J. A. Surf. Sci. 1983, 124, 209. https://doi.org/10.1016/0039-6028(83)90345-X
  8. Moskovits, M.; Suh, J. S. J. Phys. Chem. 1984, 88, 5526. https://doi.org/10.1021/j150667a013
  9. Bae, S. J.; Lee, C. R.; Choi, I. S.; Hwang, C. S.; Gong, M. S.; Kim, K.; Joo, S. W. J. Phys. Chem. B 2002, 106, 7076.
  10. Kim, S.; Ihm, K.; Kang, T. H.; Hwang, S.; Joo, S. W. Surf. Interface Anal. 2005, 37, 294. https://doi.org/10.1002/sia.2019
  11. Buck, M. Adv. Electrochem. Sci. Eng. 2009, 11, 197.
  12. Cuevas, J. C.; Scheer, E. Molecular Electronics: An Introduction to Theory and Experiments; World Scientific: Singapore, 2010.
  13. Bumm, L. A.; Arnold, J. J.; Dunbar, T. D.; Burgin, T. P.; Jones, L., II; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 1996, 271, 1705. https://doi.org/10.1126/science.271.5256.1705
  14. Collier, C. P.; Wong, E. W.; Belohradsky, M.; Raymo, F. M.; Stoddart, J. F.; Kuekes, P. J.; Williams, R. S.; Heath, J. R. Science 1999, 285, 391. https://doi.org/10.1126/science.285.5426.391
  15. Joo, S. W.; Han, S. W.; Kim, K. J. Phys. Chem. B 1999, 103, 10831. https://doi.org/10.1021/jp992230+
  16. Weckenmann, U.; Mittler, S. I.; Naumann, K.; Fischer, R. A. Langmuir 2002, 18, 5479. https://doi.org/10.1021/la011857s
  17. Azzam, W.; Wehner, B. I.; Fischer, R. A.; Terfort, A.; Wöll, C. Langmuir 2002, 18, 7766. https://doi.org/10.1021/la020426m
  18. Lee, Y. J.; Jeon, I.; Paik, W. K.; Kim, K. Langmuir 1996, 12, 5830. https://doi.org/10.1021/la9603131
  19. Cui, L.; Liu, B.; Vonlanthen, D.; Mayor, M.; Fu, Y.; Li, J. F.; Wandlowski, T. J. Am. Chem. Soc. 2011, 133, 7332. https://doi.org/10.1021/ja2020185
  20. Kwon, C. H.; Boo, D. W.; Hwang, H. J.; Kim, M. S. J. Phys. Chem. B 1999, 103, 9610. https://doi.org/10.1021/jp991479o
  21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.;Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision A. 02; Gaussian, Inc.: Wallingford CT, 2009.
  22. Varsanyi, G. Assignments for Vibrational Spectra of 700 Benzene Derivatives; Akademiai Kiado: Budapest, 1973.
  23. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1997. https://doi.org/10.1063/1.1740655
  24. Furuya, K.; Torii, H.; Furukawa, Y.; Tasumi, M. J. Mol. Struct. (Theochem) 1998, 424, 225. https://doi.org/10.1016/S0166-1280(97)00153-X
  25. Lee, Y. R.; Eom, S. Y.; Kim, H. L.; Kwon, C. H. J. Raman Spectrosc. 2012, submitted.

Cited by

  1. Raman photostability of off-resonant gap-enhanced Raman tags vol.8, pp.26, 2018, https://doi.org/10.1039/C8RA02260G
  2. Concentration dependent conformation of inosine on colloidal silver nanoparticles: A study by Raman, SERS and DFT calculation vol.1045, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2013.04.014
  3. Plasmon induced and pH controlled semiconductive conformation of 1H-2(phenylazo) imidazole on silver nanoparticles vol.1061, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2013.12.070
  4. Adsorption Characteristics and Structure of 4,4'-Bis(mercaptomethyl)biphenyl on Silver by Surface-enhanced Raman Scattering and Density Functional Theory Calculations vol.35, pp.3, 2013, https://doi.org/10.5012/bkcs.2014.35.3.875
  5. Surface enhanced Raman scattering of 2,2'-biphenyl dicarboxylic acid on silver surfaces: Structure and orientation upon adsorption vol.1115, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2016.02.074
  6. Surface-Catalyzed Photodissociation of (E)-4′,4‴-(Diazene-1, 2-diyl)bis(([1,1′-biphenyl]-4-carbonitrile)) Investigated by Surface-Enhanced Raman Scattering and Quantum Chemical Calculations vol.123, pp.12, 2019, https://doi.org/10.1021/acs.jpcc.8b12147