• Title/Summary/Keyword: scattering coefficients

Search Result 215, Processing Time 0.024 seconds

Optical Properties of Ocean Water and Marine Primary Production -A Study on the Oligotrophic Zone in the Eastern Tropical Atlantic Ocean- (해수의 광학적 성질과 해양기초생산 -동열대 대서양 Oligotrophic zone을 중심으로-)

  • YOON Hong-Joo;RYU Cheong-Ro;KIM Ki-Tae;KIM Hyeon-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.174-182
    • /
    • 1995
  • Using the optical data from the EUMELI 3 and 4 missions, the optical properties are discussed in relation to primary production in the oligotrophic zone of the Eastern Atlantic Ocean. The depth of euphotic layer $(Z_{eu})$, the total accumulated concentration of pigment $(C_{TOT})$ and the concentration of pigment (C) are 88m, $12.4mgm^{-2}\;and\;0.14mgm^{-3}$, respectively for the EUMELI 3 mission and 101.7m, $10.0mgm^{-2}\;and\;0.10mgm^{-3}$, respectively for the EUMELI 4 mission. The concentration of pigment is higher in autumn (EUMELI 3) than in spring (EUMELI 4). This indicates that the concentration of photosynthetic pigment has a close correlation with vertical attenuation coefficient $(K(\lambda))$ that changes seasonally in the euphotic layer. While the spectral distributions of downward Irradiance$(E_d)$ for the wave length of 470nm increase with depth, those of upward irradiance $(E_u)$ for the wave length range between 410nm and 490nm are constant, because the study area is covered with the blue and clear oceanic deep waters. The vertical attenuation coefficients of downward irradiance $(K_d)$ and upward irradiance $(K_u)$ have low values between 0.02 and $0.06m^{-1}$ due to the low absorption and scattering by the photosynthetic pigment of phytoplankton. Therefore this zone has the characteristics of the case 1 waters with low concentrations of photosynthetic pigment, and can be classifed into IB.

  • PDF

Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio (선포토미터 데이터를 이용한 편광소멸도 산출과 라이다 편광소멸도와의 비교)

  • Kim, Kwanchul;Choi, Sungchul;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • We present linear particle depolarization ratio at 440, 675, 870, and 1020 nm retrieved from measurements with an AERONET sun/sky radiometer at Osaka, Japan. The retrieved data were compared with lidar derived linear particle depolarization ratio at 532 nm at the same site. We find good agreement between linear particle depolarization ratios derived with Sun photometer and measured by lidar except for those at 440 nm. The coefficients of determination between lidar derived data and sun/sky radiometer derived data were 0.28, 0.81, 0.88, and 0.89 at 440, 675, 870, and 1020 nm, respectively. We find that the linear particle depolarization ratio derived with sun/sky radiometer varies by the mixing between Asian dust and pollution particles. As the mixing ratio of Asian dust and pollution particles is increased, the linear particle depolarization ratio values are lower than the values of pure Asian dust. It was confirmed by the value of single-scattering albedo and particle size distribution.

Advances in Ultrasonic Testing of Austenitic Stainless Steel Welds

  • Moysan, J.;Ploix, M.A.;Corneloup, G.;Guy, P.;Guerjouma, R. El;Chassignole, B.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2008
  • A precise description of the material is a key point to obtain reliable results when using wave propagation codes. In the case of multipass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Two main advances are presented in the following. The first advance is a model which describes the anisotropy resulting from the metal solidification and thus the model reproduces an anisotropy that is correlated with the grain orientation. The model is called MINA for modelling anisotropy from Notebook of Arc welding. With this kind of material model1ing a good description of the behaviour of the wave propagation is obtained, such as beam deviation or even beam division. But another advance is also necessary to have a good amplitude prediction: a good quantification of the attenuation, particularly due to grain scattering, is also required as far as attenuation exhibits a strong anisotropic behaviour too. Measurement of attenuation is difficult to achieve in anisotropic materials. An experimental approach has been based both on the decomposition of experimental beams into plane waves angular spectra and on the propagation modelling through the anisotropic material via transmission coefficients computed in generally triclinic case. Various examples of results are showed and also some prospects to continue refining numerical simulation of wave propagation.

Wave Control by a Surface-Mounted Horizontal Membrane (수면 위에 고정된 수평막에 의한 파랑제어)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • The performance of wave control by a surface-mounted horizontal membrane is analyzed in the frame of linear potential theory. To employ the eigenfunction expansion method, the fluid domain is divided into two regions i.e. region without membrane and membrane-covered region. By matching the each solutions at boundaries of adjacent regions, the complete solution is obtained. The present analytical method solving the scattering problem directly gives the same results as Cho and Kim(1998)'s method solving the diffraction and the radiation problem separately. To verify the developed model, the model test with a surface-mounted horizontal membrane is conducted at the wave tank(36m${\times}$0.91m${\times}$l.22m). The analytic results are in good agreement with the experimental results. The reflection and transmission coefficients are investigated according to the change of membrane tension, length and incident frequencies.

Characteristics of Visibility Impairment by Semi-Continuous Optical and Chemical Property Monitoring of Aerosols in Seoul (에어로졸의 광학 및 화학 특성 준실시간 모니터링을 통한 서울지역 시정 감쇄 분석)

  • Park, Jong-Sung;Park, Seung-Myung;Song, In-Ho;Shin, Hye-Jung;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.319-329
    • /
    • 2015
  • The characteristics of aerosol light extinction were investigated by comparing measured and calculated extinction coefficient to understand the contribution of air pollutants on visibility impairment for data during 4 months (Jan~ April), 2014. The integrated nephelometer and aethalometer system were installed to measure the scattering and absorption coefficients of aerosol as well as BAM 1020, MARGA, semi-continuous OCEC analyzer, and online-XRF to calculate the extinction coefficient. The IMPROVE_2005 equation was used to determine the contributions of different chemical components on visibility impairment in $PM_{2.5}$ and $PM_{10}$ due to highest correlation with measured data. Sulfate, nitrate, and organic mass by carbon (OMC) of fine aerosol were the major contributors affecting on visibility impairment. Total contributions to light extinction were calculated as $631.0Mm^{-1}$ for the worst-case and $64.4Mm^{-1}$ for the best-case. The concentrations of aerosol component for the worst-case were 38.4 times and 45.5 times larger than those of the best-case for $(NH_4)_2SO_4$ and $NH_4NO_3$, respectively. At lower visibility condition, in which extinction coefficient was higher than $400Mm^{-1}$, extinction coefficient varied according to the relative humidity variation regardless of $PM_{2.5}$.

Performance of Fixing Agents in Controlling Micro-Stickies in Recycled Newsprint Pulp

  • Wang, Li-Jun;Chen, Fu-Shan;Zhou, Lin-Jie
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.111-116
    • /
    • 2006
  • The microstickes control effects of some fixing agents, including an inorganic PAC, an organic polyamine (PA) and polydiallydimethyl ammonium chloride (Pdadmac), and a high cationic starch (HCS), were investigated, together with their effects on wet end performances and physical properties of handsheets. Despite that the HCS and Pdadmac had lower cationic charge densities than the PA and PAC (the HCS being even lower), they gave higher zeta potentials to fibers, and lower turbidities, cationic demands and residual COD contents to the pulp liquid phases than the PA and PAC did. In all cases, the HCS showed even better effects than the Pdadmac. In addition, drainage speed was also much higher by the HCS treatments although paper formation was worsened. All the phenomena showed that the HCS can fix more dissolved and colloidal substances to cellulose fibers, indicating that the HCS functioned mainly with flocculation and even hydrogen bonding mechanisms. Data on optical properties further indicated that the HCS interacted preferentially with colloidal substances, since it fixed more 'dirty' microstickes to fibers which decreased more sheet brightness while increasing more sheet opacity (with both higher light absorption and scattering coefficients). Interestingly, the organic fixing agents did not decrease tensile, tearing, and folding strengths of paper sheets made from 100% recycled newsprint pulp, except when they were dosed in high amounts. On the contrary, the inorganic PAC had more serious negative effects on the strength properties, especially on folding endurance. The study suggested that proper use of the HCS can lead to better microstickies control effects than traditional agents and methods.

  • PDF

Comparison of light-absorption properties of aerosols observed in East and South Asia (동아시아와 남아시아지역에서 관측된 에어러솔의 광흡수 특성 비교)

  • Lee, Hae-Jung;Kim, Sang-Woo;Yoon, Soon-Chang;Lee, Sihye;Kim, Ji-Hyoung
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.301-309
    • /
    • 2011
  • In this study, we compared light-absorption properties of aerosols observed in East and South Asia from black carbon (BC) mass concentration, aerosol scattering (${\sigma}_s$) and absorption (${\sigma}_a$) coefficients measurements at four sites: Korea Climate Observatory-Gosan (KCO-G), Korea Climate Observatory-Anmyeon (KCO-A), Maldives Climate Observatory-Hanimaadhoo (MCO-H) and Nepal Climate Observatory-Pyramid (NCO-P). No significant seasonal variations of BC mass concentration, ${\sigma}_s$ and ${\sigma}_a$, despite of wet removal of aerosols by precipitation in summer, were observed in East Asia, whereas dramatic changes of light-absorbing aerosol properties were observed in South Asia between dry and wet monsoon periods. Although BC mass concentration in East Asia is generally higher than that observed in South Asia, BC mass concentration at MCO-H during winter dry monsoon is similar to that of East Asia. The observed solar absorption efficiency (${\alpha}$) at 550 nm, where ${\alpha}={\sigma}_a/({\sigma}_s+{\sigma}_a)$, at KCO-G and KCO-A is higher than that in MCO-H due to large portions of BC emission from fossil fuel combustion. Interestingly, ${\alpha}$ at NCO-P is 0.14, which is two times great than that in MCO-H and is about 40% higher than that in East Asia, though BC mass concentration at NCO-P is the lowest among four sites. Consistently, the highest elemental carbon to sulphate ratio is found at NCO-P.

Physico-Chemical Characteristics of Visibility Impairment in a National Park Area (국립공원 지역 시정장애 현상의 물리.화학적 특성)

  • Kim, Kyung-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.325-338
    • /
    • 2009
  • National parks provide recreation, health, and science to human being. The provision of beautiful landscape view of the national park improves an economic and social phase of a nation. However, visibility impairment frequently occurred in the national park area of Gyeongju. The purpose of this study is to investigate the physical and the chemical characteristics of visibility reduction observed at the national park area of Gyeongju. Optical, chemical, meteorological characteristics and scenic monitoring were performed at the visibility monitoring station of Gyeongju University located at the Seoak section of Gyeongju national park from April 28 to May 9, 2008. Light extinction, light scattering, and light absorption coefficients were continuously measured using a transmissometer, a nephelometer, and an aethalometer, respectively. In order to investigate the impact of aerosol chemistry on visibility impairment, size-resolved aerosols were collected at intervals of 2-hour (from 8 A.M. to 6 P.M.) and 14-hour (from 6 P.M. to 8 A.M.) interval each sampling day. The average light extinction coefficient and the average visual range were measured to be $270{\pm}135\;Mm^{-1}$ and $14.5{\pm}6.3\;km$ during the intensive monitoring period, respectively. It was revealed that sulfate particle was the largest contributor to the light extinction under hazy condition. Organic mass accounted for about 26% of the average light extinction. The mass extinction efficiencies for $PM_{1.0}$, $PM_{2.5}$, and $PM_{10}$ were estimated to be 9.0, 4.7, and $2.7\;m^2\;g^{-1}$ under the consideration of water growth function of hygroscopic aerosols, respectively.

Physico-Chemical Characteristics of Visibility Impairment by Airborne Pollen (공중화분에 의한 시정장애 현상의 물리적 및 화학적 특성 규명)

  • Kim, Kyung-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.863-875
    • /
    • 2006
  • Intensive visibility monitoring was conducted to investigate physical and chemical characteristics of visibility impairment by airborne pollen. Light attenuation coefficients were optically measured by a transmissometer, a nephelometer, and an aethalometer. Elemental, ionic, and carbonaceous species were chemically analyzed on the filters collected by $PM_{2.5}$ and $PM_{10}$ samplers. Aerosol size distribution was analyzed using a cascade impactor during airborne pollen period. Airborne pollen count was calculated using a scanning electron microscope. Airborne pollen was emitted into the atmosphere in springtime and funker degraded visibility through its scattering and absorbing the light. Average light extinction coefficient was measured to be $211{\pm}36Mm^{-1}$ when airborne pollen was not observed. But it increased to $459{\pm}267Mm^{-1}$ during the airborne pollen period due to increase of average $PM_{2.5}$ and $PM_{10}$ mass concentration and relative humidity and airborne pollen count concentration for $PM_{10}$, which were measured to be $46.5{\pm}29.1{\mu}g\;m^{-3},\;97.0{\pm}41.7{\mu}g\;m^{-3},\;54.1{\pm}11.6%$, and $68.2{\pm}89.7m^{-3}$, respectively. Average light extinction efficiencies for $PM_{2.5}$ and $PM_{10}$ were calculated to be $5.9{\pm}0.9$ and $4.5{\pm}0.8m^2 g^{-1}$ during the airborne pollen period. Light extinction efficiency for $PM_{10}$ increased further than that for $PM_{2.5}$. The average light extinction budget by airborne pollen was estimated to be about 24% out of the average measured light extinction coefficient during the airborne pollen period.

Comparison Analysis of Estimation Models of Hourly Horizontal Global Solar Radiation for Busan, Korea (부산지역에 적합한 시간당 수평면 전일사량 산출모델의 비교분석)

  • Kim, Kee Han;Oh, Kie-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.9-17
    • /
    • 2013
  • Hourly horizontal global solar radiation has been used as one of significant parameters in a weather file for building energy simulations, which determines the quality of building thermal performance. However, as about twenty two weather stations in Korea have actually measured the horizontal global sola radiation, the weather files collected in other stations requires solar data simulation from the other meteorological parameters. Thus, finding the reliable complicated method that can be used in various weather conditions in Korea is critically important. In this paper, three solar simulation models were selected and evaluated through the reliability test with the simulated hourly horizontal global solar radiation against the actually measured solar data to find the most suitable model for the south east area of Korea. Three selected simulation models were CRM, ZHM, and MRM. The first two models are regression type models using site-fitted coefficients which are derived from the correlation between measured solar data and local meteorological parameters from the previous years, and the last model is a mechanistic type model using the meteorological data to calculate conditions of atmospheric constituents that cause absorption and scattering of the extraterrestrial radiation on the way to the surface on the Earth. The evaluation results show that ZHM is the most reliable model in this area, yet a complicated hybrid simulation methods applying the advantages of each simulation method with the monthly-based weather data is needed.