DOI QR코드

DOI QR Code

Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio

선포토미터 데이터를 이용한 편광소멸도 산출과 라이다 편광소멸도와의 비교

  • Kim, Kwanchul (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Choi, Sungchul (Soltop Inc.) ;
  • Noh, Youngmin (International Environmental Research Center, Gwangju Institute of Science and Technology)
  • Received : 2016.03.09
  • Accepted : 2016.03.16
  • Published : 2016.04.30

Abstract

We present linear particle depolarization ratio at 440, 675, 870, and 1020 nm retrieved from measurements with an AERONET sun/sky radiometer at Osaka, Japan. The retrieved data were compared with lidar derived linear particle depolarization ratio at 532 nm at the same site. We find good agreement between linear particle depolarization ratios derived with Sun photometer and measured by lidar except for those at 440 nm. The coefficients of determination between lidar derived data and sun/sky radiometer derived data were 0.28, 0.81, 0.88, and 0.89 at 440, 675, 870, and 1020 nm, respectively. We find that the linear particle depolarization ratio derived with sun/sky radiometer varies by the mixing between Asian dust and pollution particles. As the mixing ratio of Asian dust and pollution particles is increased, the linear particle depolarization ratio values are lower than the values of pure Asian dust. It was confirmed by the value of single-scattering albedo and particle size distribution.

본 연구에서는 일본 오사카에서 AERONET 선포토미터로 관측된 데이터를 분석하여 440, 675, 870, 1020 nm 파장에서의 입자 편광소멸도를 산출하였다. 산출된 결과는 같은 지역에서 측정된 라이다 자료로부터 얻어진 532 nm에서의 입자 편광소멸도와 비교하였다. 두 값은 440 nm를 제외하고는 잘 일치되는 결과를 보였고, 상관계수($R^2$)는 440, 675, 870, 1020 nm에서 각각 0.28, 0.81, 0.88 0.89의 값을 보였다. 가장 높은 상관계수를 보인 1020 nm에서의 입자 편광소멸도를 기준으로 값의 변화에 따른 입자의 혼합정도를 확인하였을 때, 순수 황사의 경우 높은 편광소멸도를 보이고 오염입자가 혼합될수록 값이 낮아짐을 보였다. 이는 단산란 알베도와 입자 크기 분포를 통하여 확인하였다.

Keywords

References

  1. Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B.N., Mishchenko, M., Yang, P., Eck, T.F., Volten, H., Munñoz, O.,Veihelmann, B., van der Zande, W.J., Leon, J.F., Sorokin, M. and Slutsker, I.,2006. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, Journal of Geophysical Research, 111, D11208. https://doi.org/10.1029/2005JD006619
  2. Lee, K.H., Müller, D., Noh, Y.M., Shin, S.K., and Shin, D.H., 2010. Depolarization Ratio Retrievals Using AERONET Sun Photometer Data, Journal of the Optical Society of Korea, 14(3): 178-184. https://doi.org/10.3807/JOSK.2010.14.3.178
  3. Müller, D., Lee, K. H., Gasteiger, J., Tesche, M., Weinzierl, B., Kandler, K., Müller, T., Toledano, C., Otto, S., Althausen, D., and Ansmann, A., 2012. Comparison of optical and microphysical properties of pure Saharan mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006, Journal of Geophysical Research, 117: D07211.
  4. Noh, Y.M., and Lee, K.H., 2013a. Characterization of optical properties of long-range transported Asian dust in Northeast Asia, Korean Journal of Remote Sensing, 29(2): 243-251(in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.2.8
  5. Noh, Y.M., Lee, C.K., Kim, K.C., Shin, S.K., Shin, D.H., and Choi, S.C., 2013b. Retrieval of Vertical Single-scattering albedo of Asian dust using Multi-wavelength Raman Lidar System, Korean Journal of Remote Sensing, 29(4): 415-421(in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.4.7
  6. Noh, Y. M., Müller, D., Lee, H., Lee, K., Kim, K., Shin, S., and Kim, Y.J., 2012. Estimation of radiative forcing by the dust and non-dust content in mixed east Asian pollution plumes on the basis of depolarization ratios measured with lidar, Atmospheric Environment, 61: 221-231. https://doi.org/10.1016/j.atmosenv.2012.07.034
  7. Russell, P.B., Bergstrom, R.W., Shinozuka, Y., Clarke, A.D., DeCarlo, P.F., Jimenez, J.L., Livingston, J.M., Redemann, J., Dubovik, O., and Strawa, A., 2010. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmospheric Chemistry and Physics, 10: 1155-1169. https://doi.org/10.5194/acp-10-1155-2010
  8. Sakai, T., Nagai, T., Nakazato, M., Mano, Y., and Murayama, T., 2003. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and watervapor mixing ratio over Tsukuba, Applied Optics, 42(36): 7103-7116. https://doi.org/10.1364/AO.42.007103
  9. Shin, S.K., Park, Y.S., Choi, B.C., Lee, K.H., Shin, D.H., Kim, Y.J. and Noh,Y.M., 2014. Retrieval of the variation of optical characteristics of Asian dust plume according to their vertical distribution using multi-wavelength Raman LIDAR system, Korean Journal of Remote Sensing, 30(5): 597-605(in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.5.5

Cited by

  1. Aerosol Optical Properties Retrieval and Separation of Asian Dust using AERONET Sun/Sky Radiometer Measurement at the Asian Dust Source Region vol.32, pp.3, 2016, https://doi.org/10.7780/kjrs.2016.32.3.4
  2. AERONET 선포토미터 자료를 이용한 국내 에어로졸 유형별 특성과 광학적 두께 변화 연구 vol.36, pp.2, 2016, https://doi.org/10.7780/kjrs.2020.36.2.1.1