• Title/Summary/Keyword: scanning microscopy

Search Result 5,699, Processing Time 0.032 seconds

Biological applications of the NanoSuit for electron imaging and X-microanalysis of insulating specimens

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.4.1-4.11
    • /
    • 2022
  • Field emission scanning electron microscopy (FESEM) is an essential tool for observing surface details of specimens in a high vacuum. A series of specimen procedures precludes the observations of living organisms, resulting in artifacts. To overcome these problems, Takahiko Hariyama and his colleagues proposed the concept of the "nanosuit" later referred to as "NanoSuit", describing a thin polymer layer placed on organisms to protect them in a high vacuum in 2013. The NanoSuit is formed rapidly by (i) electron beam irradiation, (ii) plasma irradiation, (iii) Tween 20 solution immersion, and (iv) surface shield enhancer (SSE) solution immersion. Without chemical fixation and metal coating, the NanoSuit-formed specimens allowed structural preservation and accurate element detection of insulating, wet specimens at high spatial resolution. NanoSuit-formed larvae were able to resume normal growth following FESEM observation. The method has been employed to observe unfixed and uncoated bacteria, multicellular organisms, and paraffin sections. These results suggest that the NanoSuit can be applied to prolong life in vacuo and overcome the limit of dead imaging of electron microscopy.

Recent Advances in Scanning Acoustic Microscopy for Adhesion Evaluation of Thin Films

  • Ju, Hyeong-Sick;Tittmann, Bernhard R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.534-549
    • /
    • 2009
  • As the thin film technology has emerged in various fields, adhesion of the film interface becomes an important issue in terms of the longevity and durability of thin film devices. Diverse nondestructive methods utilizing acoustic techniques have been developed to assess the interfacial integrity. As an effective technique based on the ultrasonic wave focusing and the surface acoustic wave(SAW) generation, scanning acoustic microscopy(SAM) has been investigated for adhesion evaluation. Visualization of film microstructures and quantification of adhesion weakness levels by SAW dispersion are the recent achievements of SAM. To overcome the limitations in the theoretical dispersion model only suitable for perfectly elastic and isotropic materials, a new model has been more recently developed in consideration of film anisotropy and viscoelasticity and applied to the adhesion evaluation of polymeric films fabricated on semiconductive wafers.

Scanning Electron Microscopy Studies of Saccharomyces cerevisiae Structural Changes by High Hydrostatic Pressure Treatment

  • Bang, Woo-Suk;Swanson, Barry G.
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1102-1105
    • /
    • 2008
  • The structural change and leakage of cellular substances of Saccharomyces cerevisiae attributed by high hydrostatic pressure (HHP) treatment were observed with scanning electron microscopy (SEM). S. cerevisiae (ATCC16664) was inoculated in apple juice for 10 min at $23^{\circ}C$ and the apple juice treated at 138, 207, 276, 345, and 414 MPa pressure for 30 sec at $23^{\circ}C$. Increased of roughness, elongation, wrinkling, and pores on yeast cell surfaces, the yeast cell walls were severely damaged by HHP treatment from 276 to 414 MPa. Inactivation of S. cerevisiae by HHP is dependent on structural changes on the cell walls observed with SEM.

Scanning Electron Microscopy of the Tisues of Helicoverpa assulta Larvae intoxicated with Bacillus thuringiensis Protein Crystals.

  • Cheon Hyang Mi;You
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.162-167
    • /
    • 1994
  • Surface changes of tissues caused by B. thuringiensis var. kurstaki-$\delta$-endotoxin intoxication of Helicoverpa assulta were observed by scanning electron microscopy. Bt-endotoxin crystals induced the erosion and disruption on the surface of all tissues tested. The results revealed that the toxin binds to all exposed plasma membranes without apparent specificity for particular membrane domains.

  • PDF

Nanotechnology and scanning microprobe microscopy (주사형 마이크로프로브 현미경과 나노테크놀로지)

  • ;Muramatsu, H.
    • Electrical & Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.616-625
    • /
    • 1996
  • 본 고에서는 최첨단 주사형 마이크로프로브현미경의 최근동향에 대해 기술하고자 한다. SNOAM의 관찰분야에의 응용이라는 관점에서 광학소자, 반도체재료, 유기박막등의 미소영역에의 광학특성의 관찰이외에 생물분야에서는 형광표식한 시료의 형상상과 형광상의 대비에서 세포나 생체고분자의 기능 해명에도 이용 가능하다고 생각된다. 또한 광가공기술에의 응용이나 기억소자 기술에의 응용도 고려되어져 금후의 응용분야에의 발전이 기대된다. 다가오는 21세기 정보화사회에서는 분자.원자를 제어하는 기술이 중심기술이 될 것으로 확신되고 있다. 그러나 현재 우리주변 기술로서 분자. 원자를 단위로 하는 평가, 분석 기술은 거의 찾을 수 없다. 따라서 주사형 마이크로 프로브 현미경은 Nano-technology로서 장래 정보화사회에 중요한 평가.분석기술의 하나로서 정착될것으로 생각된다.

  • PDF

A Study on the Coupling of a Flanged Parallel-Plate Waveguide to a Slit In a Nearby Conducting Screen for Near-Field Scanning Microscopy

  • Lee, Jong-Ig;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.105-109
    • /
    • 2009
  • The problem of electromagnetic coupling between a slit fed by a flanged parallel-plate waveguide(PPW) and a slit in an infinite nearby conducting screen parallel to the flanged ground conductor is studied as a simplified problem for a near-field scanning microscopy(NSM). The method of moments isused to solve the coupled integral equations for the electric field distributions over the slits. The performance of the proposed apparatus as an NSM is tested by examining the effects of some geometrical parameters on the equivalent slit admittance and coupled powers through the slits.

Profile Measurements of Micro-Machined Surfaces by Scanning Tunneling Microscopy (터널링효과를 이용한 초미세 가공표면의 형상측정)

  • Jung, Seung-Bae;Lee, Young-Ho;Kim, Seung-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1731-1739
    • /
    • 1993
  • An application of Scanning Tunneling Microscopy(STM) is investigated for the measurement of 3-dimensional profiles of the macro-machined patterns of which critical dimensions lie in the range of submicrometers. Special emphasis of this investigation is given to extending the measuring ranges of STM upto the order of several micrometers while maintaining superb nanometer measuring resolution. This is accomplished by correcting hysteresis effects of piezoelectric actuators by using non-linear compensation models. Detailed aspects of design and control of a prototype measurement system are described with some actual measuring examples in which fine It patterns can successfully be traced with a resolution of 1 nanometer over a surface range of $4{\times}2$ micrometers.

Binding Structures of Diatomic Molecules to Co-Porphyrins on Au(111) Studied by Scanning Tunneling Microscopy

  • Lee, Soon-Hyeong;Kim, Ho-Won;Jeon, Jeong-Heum;Jang, Won-Jun;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.130-130
    • /
    • 2012
  • Axial bindings of diatomic molecules to metalloporphyrins involve in the dynamic processes of biological functions such as respiration, neurotransmission, and photosynthesis. The binding reactions are also useful in sensor applications and in control of molecular spins in metalloporphyrins for spintronic applications. Here, we present the binding structures of diatomic molecules to surface- supported Co-porphyrins studied using scanning tunneling microscopy. Upon gasexposure, three-lobed structures of Co-porphyrins transformed to bright ring shapes on Au(111), whereas H2-porphyrins of dark rings remained intact. The bright rings are explained by the structures of reaction complexes where a diatomic ligand, tilted away from the axis normal to the porphyrin plane, is under precession. Our results are consistent with previous bulk experiments using X-ray diffraction and nuclear magnetic resonance spectroscopy.

  • PDF

Realization for Each Element for capturing image in Scanning Electron Microscopy (주사 전자 현미경에서 영상 획득에 필요한 구성 요소 구현)

  • Lim, Sun-Jong;Lee, Chan-Hong
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.26-30
    • /
    • 2009
  • Scanning Electron Microscopy (SEM) includes high voltage generator, electron gun, column, secondary electron detector, scan coil system and image grabber. Column includes electron lenses (condenser lens and objective lens). Condenser lens generates fringe field, makes focal length and control spot size. Focal length represents property of lens. Objective lens control focus. Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lens and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. In this paper, we describe the result of research to develop the core elements for low-resolution SEM.

  • PDF

Thickness-dependent magnetic domain structures of Co ultra-thin film investigated by scanning transmission X-ray microscopy

  • Yoon, Ji-Soo;Kim, Namdong;Moon, Kyoung-Woong;Lee, Joo In;Kim, Jae-Sung;Shin, Hyun-Joon;Kim, Wondong
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1185-1189
    • /
    • 2018
  • Thickness-dependent magnetic domain structure of ultrathin Co wedge films (0.3 nm-1.0 nm) sandwiched by Pt layers was investigated by scanning transmission x-ray microscopy (STXM) employing X-ray magnetic circular dichroism (XMCD), utilizing elliptically polarized soft x-rays and electromagnetic fields, with a spatial resolution of 50 nm. The magnetic domain images measured at the Co $L_3$ edge showed the evolution of the magnetic domain structures from maze-like form to the bubble-like form as the perpendicular magnetic field was applied. The asymmetric domain expansion of a 500 nm-scale bubble domain was also measured when the in-plane and perpendicular external magnetic field were applied simultaneously.